京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的全面铺展,大数据应用的全面展开,数据分析师、数据挖掘师、数据科学家、首席数据分析师等专业性极高的岗位的刚性需求越来越大,数据分析师的待遇也只会越来越好,数据分析师的发展前景也只会越来越光明。这大数据应用这一块的未来发展趋势大好的情况下,我们要做的是什么?当然是不断提高自己的数据分析方面的专业知识和职业素养,让自己的数据分析岗位或数据分析职称更上一层楼,我们的工作待遇自然也会蹭蹭往上涨,我们的生活质量自然也会变得更好。大数据应用的当下,大数据在市场中发挥的价值真的是越来越巨大,大到可能连我们自己都不敢相信。对于未来,大数据发挥的市场价值走向会是怎么的呢?下面就来详细跟大家讲讲数据在未来的市场价值到底有多大。

今天,成功的互联网公司,电子商务公司,无论是全球的还是中国的,都是利用数据,也就是利用大数据成功进行商业创新的先锋,他们是走在最前面的,是先成功的一批,但是更大的机会在于其它各行各业的企业,所有其它各行各业的企业都可以成为数据驱动的企业,都可以利用大数据促进我们自己企业的成功。

无处不在的“大数据”
据介绍,对于“大数据概念”,同方股份早在2005年就涉及相关业务,当时虽然还是是数据类应用,非名为“大数据”,但确与数据相关。周侠说:“我们已经定义了人与数据的概念,这是一种积累的关系。将大数据作为产业去发展,在未来的社会,数据将在很大程度上、更多角度影响到我们的生活环境,未来的市场是巨大的。”
周侠认为,大数据中的“大”指的是数据量级大,结构多元化复杂;“数”是无规则、无认知、历史、实时的;“据”是对数字的采集加工和分析,形成依据,找出论据体现它的价值。
“大数据”可以说是无处不在。在虚拟互联网中,发一张照片、上传一个文件、进行一次搜索等操作都可以看做一个数据;而在现实生活中,打电话、去医院挂号、去超市购买物品等行为也都是数据。将这样庞大而看似无序的数据进行分层,然后进行一系列复杂的分析,找出其“相关性”,从而可以客观反映出事物的现状。
比如:当下有许多超市可以注册会员,所有会员所购买的物品都会被电脑记录下来,如果将每个会员所购买的物品进行分析,就会得出每个会员购物习惯,进而分析出会员的喜好以及近期所急需的物品。一些超市会根据每个会员的喜好进行精准营销,从而获得更大的利润。
同方股份总经理兼总工程师李小华表示,同方股份的目标不是仅仅为了做一个数据资源体系,而是希望能够利用数据资源体系,帮助ZF解决其信息和数据支撑不足的情况。

体现“大数据”价值三步走
周侠认为,实现“大数据”价值首先要注重数据的共识性、全局性和相关性等特点。首先,在数据搜集方面,同方股份除了通过物联网技术、传感器得到实时数据外,还将购买第三方的数据。其中重点是与一些跟数据有联系的ZF部门和机构展开合作,比如统计局、经信委等,以此保证数据的共识性。
第二步,同方股份将数据之间建立相关性,进而建立一套标准体系。周侠认为,单纯的数据并没有价值,必须有一套理念来、一套机制对数据进行处理、对接,然后得出可以描述全局的“数据”,进而形成对于机构的检测评价体系。
第三步,找出工作现状与工作目标之间的“偏差”,这种“偏差”可以单独拿出来,再进行一次数据处理,从而在目标上去调整这种偏差。这个就使机构的发展更加健康和准确,通过这些环节把“大数据”的价值体现出来。
基于此,同方股份已推出“基于元数据的统计核心业务系统”,该产品通过建设统计业务和政务管理相结合的数据处理软件集成平台,实现从规划设计、数据采集、处理、存储、分析、发布的统计业务全过程的电子化,并支持统计局与ZF相关部门间的数据交换和资源共享。
周侠说,在生活、工作中,每个人做出的一次决策,其实都是对数据加工分析过程,只不过没有理论体系支撑而已。而通过技术方法论来把这种过程科学化、理论化、合理化,将会形成真正的决策。也许这种决策也会有一些偏差,但比那种“拍脑门”的决策肯定进步了很多。因此,“大数据”不仅可用于商业用途,还可以帮助ZF进行决策,甚至在智慧城市建设中必不可少,在未来将会蓬勃发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01