京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在面向产品新人的各类分享中,大咖们都在反复强调“思想/思维”对于产品经理职业发展的重要性。然而,对于大多数产品萌新而言,在听完种种方法论之后,可能会遇到这样的困惑——
仿佛随处都能感受到思维的影响,却无法清晰的看见思维和日常工作的关联。
在这篇文章中,我将尝试拆解产品经理日常工作中的“内化→ 外化”流程,构建一个将工作、技能、思维三个层次打通的产品经理能力模型。希望这篇文章能帮助产品新人梳理自己的职业能力谱,对未来的职业发展有更清晰的规划。
首先,我想以自己为例,从每天面对的具体工作谈起。
作为在线教育行业的普通产品人,在日常工作中,我一方面需要输出某个具体功能/模块的原型、PRD,另一方面需要作为“中间人”的角色,与设计、研发、教研、运营等部门的人员进行对接,协调各方的问题、需求和进展,推动方案落地。
为了完成这些任务,我需要收集足够的信息,用来帮助我思考,作出判断,输出方案。这些信息可能是教室里观察到的场景,用户的反馈,运营或产品埋点统计的数据,行业新闻动态,业内人士分享的观点,与同事或领导探讨的思路等等。
把我每天的具体工作进行分类和抽象,可以简化为这样一个模型。
这个模型也许是大多数产品新人所感知到的工作流程。然而,最关键的问题并没有解决:
“分析思考”到底是怎么进行的呢?各类教程中所说的“产品经理需要具备的xx种能力”,究竟是如何作用于“输入->输出”的转化流程呢?
让我们先跳出“产品经理”这个角色,回到熟悉的日常生活场景——给同事们集体订外卖,拆解一下这个过程中,我们经历了怎样的分析思考流程。
1. 看一看外卖app有哪些分类,如“面食粥点”、“水饺馄饨”、“麻辣香锅”等等,看看平均消费和优惠,问问大家的预算和偏好,听听朋友推荐哪家店。——【感知】外界的信息2. 大家有哪些忌口,大多数人喜欢吃什么,预算是什么范围,各个分类的外卖平均价格大概是多少,自己的朋友为什么推荐那家店。——【分析】获取的信息3. 好的外卖应当具备哪些特点(等待时间短、食物好吃、健康营养、价格实惠),朋友推荐的那家真的适合吗。——对点外卖这件事本质的【认知】4. 应该按什么逻辑挑选外卖(首先不要超出预算,其次必须要避开各人的忌口,第三要好吃,第四考虑健康营养,在等待时间上可以适度妥协,最后尽可能获得更大的优惠)。——如何点外卖的决策【模型】5. 平均价格不超过20元;有三份外卖不能是辣的,两份不能含有葱和香菜;南方人多,可以考虑口味清淡一点;优先找好评率高的,尽量不找汉堡和麻辣烫,要荤素搭配……——【设计】具体的点外卖规则6. 具体买xx份a套餐、x份b套餐、x份c套餐。——落地【方案】
如下图所示,我们订外卖的思考决策流程可以这样抽象概括:
再深一步,我们可以从纵向和横向两个角度,对这六个流程进行抽象分类。
先说纵向:
“感知”和“方案”都是直接与外部世界交互的过程,这里把它归类为“表现”。“分析”和“设计”需要用到知识和工具,这里把它归类为“技能”。“认知”和”模型“都是主观思考的过程,这里把它归类为”思想“。
再说横向:
感知 → 分析 → 认知,这是一个由外界到思想的过程,属于”内化“。模型 → 设计 → 方案,则是由思想到外界的过程,是“外化”。
当然,这样纵横的展示可能不够直观,我们可以将它转换成环形图。
构建了抽象的“分析思考”流程之后,我们把思路重新带回“产品经理”这个角色。
产品经理的工作任务,本质就是由“表现层”感知外界(收集需求、探讨观点、观察场景、搜集数据、了解竞品等),最终再由“表现层”反馈方案(产品原型、PRD、需求优先级、沟通协调等)。产品经理的专业水平,本质就是“技能层”的转化能力,例如数据分析、用户画像、业务/功能的流程梳理、交互体验的设计思路等等。产品经理的思维层次,本质就是“思想层”的认知模型,例如大家常说的三观、理念和方法论。
我们可以将上述关于产品经理的方方面面,分类整理到图中。
*这一步所展示的内容也许并不完整,我自己也有很多技能尚待加强,所以此处就不做过多的延伸了,后续的工作中我还会不断的反思、梳理,并逐步分享在这里。
最后,我针对从输入到输出的每个步骤,总结了一些我们将会面对的问题(如下图左侧所示),这里的每一个问题都值得结合具体工作进行深入思考。
*限于个人能力经验,分享内容可能存在偏颇和疏漏之处,望批评斧正。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06