
因子模型举例:主成分分析
我之前提到的因子风险主要包括经济的(知利率)、基本面的(如账面市值比率)和技术的(如前期收益率)。获得一个包含大童股票的投资组合因子风险的历史数据,并用于对因子模型进行回测,对于独立交易员来说是非常昂贵且不切实际的。不过,有一种因子模型,其构建只依核于历史收益率。这个方法叫做主成分分析(PCA)。
用主成分分析构建因子风险和因子收益率,必须假设因子风险在估计的时间段内是不变的(时间独立)。(这排除了表示均值回归或惯性的因子,因为这些因子风险都与前期收益率有关)。更重要的是,如果假设因子收益率之间“不相关”,协方差矩阵bbT就是对角矩阵。如果用协方差矩阵RRT的特征向量作为APT方程R=Xb+u中矩阵X的列向量,可知bbT的确是对角矩阵,并且矩阵RRT的特征值正好扰是因子收益率b的方差。但是,如果因子数量与股票数量相等,我们就不需要使用因子分析了,因为只要选取几个具有较大特征位的特征向黄就能构成矩阵X。特征向量的个数是一个需要优化的交易模型参数。
下面的MATLAB程序展示了一个对S&P60。小盘股使用主成分分析的可能交易策略。这一策略仅设因于收益率具有惯性,即从本期到下期。因于收益率的值保持不变。因此,可以买入基于这些因子的期望收益率最高的股票,卖出期望收益率最低的股票。如果发现这一策略的平均收益率为负,表明对收益率具有惯性的假设是不合适的,或者策略的特有收益率太大了以至于策略失效。
clear;
%使用回望交易日作为佑计区间(训练集),以此来决定因子风险
%回望期交易日为252天,因子5个
%交易策略为:购买下一个交易日期望收益率最高的50只股票topN = 50;
%选用SP600小盘股做测试(此MATLAB二进制辑入丈件包含交易日,股票,开盘价,最高价,最低价,收盘价)
load('IJR 20080114');
mycls=fillMissingData(cl);
positionsTable=zeros (size(cl));
写dailyret的行是在不同时间段上的观察值
dailyret=(mycls一lagl(mycls))/lagl(mycls);
for t=lookback+1:length(tday)
% R的列是不同的观刻对象
R=dailyret(t-lookback+一:t.:)’;
%不考虑所有收益率缺失的股票
hasData=find(all(isfinite(R),2));
R=R(hasData,:);
avgR=smartmean(R,2);
%移去均值
R=R-repmat(avgR,[1 size(R,2)]);
%计算不同股票收益率的协方差拒阵
covR= smartcov(R');
% X是因子风险矩阵,B是因子收益率的方差
%用covR的特征值作为X的列向量
[X,B]=eig(covR);
%保留的因子数为numFactors
X(:,1:size(X,2)-numFactors) =[];
% b是从时间t-1到t的因子收益率
results=ols(R(:,end),X);b= results.beta;
% Rexp是假设因子收益率保持常数时。下一个时间段的期望收益率
Rexp=avgR+X*b;
[foo idxSort]=sort(Rexp,'ascend');
%做空期望收益率最低的50只股票
positionsTable(t,hasData(idxSort(1:topN)))=-1;
%做多期望收益率最高的50只股票
positionsTable(t,. ..
hasData(idxSort(end-opN+1:end)))=1;
end
%计算交易策略的每日收益率
ret=...
smartsum(backshift(1,positionsTable).*dailyret,2);
%计算交易策略的年化收益率
avgret=smartmean(ret)*252%收益率很低
%avgret=
%
%-1.8099
程序中使用了smartcov函数来计算多只股票日收益平向量的协方差矩阵。与MATLAB内置的cov函数不同,smartcov函数忽略了收益率缺失的交易日(包括NaN值)。
function y=smartcov(x)
% n个有限元素的协方差
% 行为观测值,列为变量
% 用N标准化,而非N-1
y= NaN (size(x,2) , size(x, 2 ));
xc= NaN(size(x));
goodstk=find(~all(isnan(x),1));
xc(:,goodstk)=...
x(:,goodstk)-repmat(smartmean(x(:,goodstk),1),...
[size(x,1)1];%移去均值
for m=1:length(goodstk)
for n=m:length(goodstk)
y(goodstk(m),goodstk(n))=...
smartmean(xc(:,goodstk(m)).
*..xc(:,goodstk(n)));
y(goodstk(n),goodstk(m))=y(goodstk(m) ,goodstk(n));
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27