京公网安备 11010802034615号
经营许可证编号:京B2-20210330
因子模型举例:主成分分析
我之前提到的因子风险主要包括经济的(知利率)、基本面的(如账面市值比率)和技术的(如前期收益率)。获得一个包含大童股票的投资组合因子风险的历史数据,并用于对因子模型进行回测,对于独立交易员来说是非常昂贵且不切实际的。不过,有一种因子模型,其构建只依核于历史收益率。这个方法叫做主成分分析(PCA)。
用主成分分析构建因子风险和因子收益率,必须假设因子风险在估计的时间段内是不变的(时间独立)。(这排除了表示均值回归或惯性的因子,因为这些因子风险都与前期收益率有关)。更重要的是,如果假设因子收益率之间“不相关”,协方差矩阵bbT就是对角矩阵。如果用协方差矩阵RRT的特征向量作为APT方程R=Xb+u中矩阵X的列向量,可知bbT的确是对角矩阵,并且矩阵RRT的特征值正好扰是因子收益率b的方差。但是,如果因子数量与股票数量相等,我们就不需要使用因子分析了,因为只要选取几个具有较大特征位的特征向黄就能构成矩阵X。特征向量的个数是一个需要优化的交易模型参数。

下面的MATLAB程序展示了一个对S&P60。小盘股使用主成分分析的可能交易策略。这一策略仅设因于收益率具有惯性,即从本期到下期。因于收益率的值保持不变。因此,可以买入基于这些因子的期望收益率最高的股票,卖出期望收益率最低的股票。如果发现这一策略的平均收益率为负,表明对收益率具有惯性的假设是不合适的,或者策略的特有收益率太大了以至于策略失效。
clear;
%使用回望交易日作为佑计区间(训练集),以此来决定因子风险
%回望期交易日为252天,因子5个
%交易策略为:购买下一个交易日期望收益率最高的50只股票topN = 50;
%选用SP600小盘股做测试(此MATLAB二进制辑入丈件包含交易日,股票,开盘价,最高价,最低价,收盘价)
load('IJR 20080114');
mycls=fillMissingData(cl);
positionsTable=zeros (size(cl));
写dailyret的行是在不同时间段上的观察值
dailyret=(mycls一lagl(mycls))/lagl(mycls);
for t=lookback+1:length(tday)
% R的列是不同的观刻对象
R=dailyret(t-lookback+一:t.:)’;
%不考虑所有收益率缺失的股票
hasData=find(all(isfinite(R),2));
R=R(hasData,:);
avgR=smartmean(R,2);
%移去均值
R=R-repmat(avgR,[1 size(R,2)]);
%计算不同股票收益率的协方差拒阵
covR= smartcov(R');
% X是因子风险矩阵,B是因子收益率的方差
%用covR的特征值作为X的列向量
[X,B]=eig(covR);
%保留的因子数为numFactors
X(:,1:size(X,2)-numFactors) =[];
% b是从时间t-1到t的因子收益率
results=ols(R(:,end),X);b= results.beta;
% Rexp是假设因子收益率保持常数时。下一个时间段的期望收益率
Rexp=avgR+X*b;
[foo idxSort]=sort(Rexp,'ascend');
%做空期望收益率最低的50只股票
positionsTable(t,hasData(idxSort(1:topN)))=-1;
%做多期望收益率最高的50只股票
positionsTable(t,. ..
hasData(idxSort(end-opN+1:end)))=1;
end
%计算交易策略的每日收益率
ret=...
smartsum(backshift(1,positionsTable).*dailyret,2);
%计算交易策略的年化收益率
avgret=smartmean(ret)*252%收益率很低
%avgret=
%
%-1.8099
程序中使用了smartcov函数来计算多只股票日收益平向量的协方差矩阵。与MATLAB内置的cov函数不同,smartcov函数忽略了收益率缺失的交易日(包括NaN值)。
function y=smartcov(x)
% n个有限元素的协方差
% 行为观测值,列为变量
% 用N标准化,而非N-1
y= NaN (size(x,2) , size(x, 2 ));
xc= NaN(size(x));
goodstk=find(~all(isnan(x),1));
xc(:,goodstk)=...
x(:,goodstk)-repmat(smartmean(x(:,goodstk),1),...
[size(x,1)1];%移去均值
for m=1:length(goodstk)
for n=m:length(goodstk)
y(goodstk(m),goodstk(n))=...
smartmean(xc(:,goodstk(m)).
*..xc(:,goodstk(n)));
y(goodstk(n),goodstk(m))=y(goodstk(m) ,goodstk(n));
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11