京公网安备 11010802034615号
经营许可证编号:京B2-20210330
因子模型举例:主成分分析
我之前提到的因子风险主要包括经济的(知利率)、基本面的(如账面市值比率)和技术的(如前期收益率)。获得一个包含大童股票的投资组合因子风险的历史数据,并用于对因子模型进行回测,对于独立交易员来说是非常昂贵且不切实际的。不过,有一种因子模型,其构建只依核于历史收益率。这个方法叫做主成分分析(PCA)。
用主成分分析构建因子风险和因子收益率,必须假设因子风险在估计的时间段内是不变的(时间独立)。(这排除了表示均值回归或惯性的因子,因为这些因子风险都与前期收益率有关)。更重要的是,如果假设因子收益率之间“不相关”,协方差矩阵bbT就是对角矩阵。如果用协方差矩阵RRT的特征向量作为APT方程R=Xb+u中矩阵X的列向量,可知bbT的确是对角矩阵,并且矩阵RRT的特征值正好扰是因子收益率b的方差。但是,如果因子数量与股票数量相等,我们就不需要使用因子分析了,因为只要选取几个具有较大特征位的特征向黄就能构成矩阵X。特征向量的个数是一个需要优化的交易模型参数。

下面的MATLAB程序展示了一个对S&P60。小盘股使用主成分分析的可能交易策略。这一策略仅设因于收益率具有惯性,即从本期到下期。因于收益率的值保持不变。因此,可以买入基于这些因子的期望收益率最高的股票,卖出期望收益率最低的股票。如果发现这一策略的平均收益率为负,表明对收益率具有惯性的假设是不合适的,或者策略的特有收益率太大了以至于策略失效。
clear;
%使用回望交易日作为佑计区间(训练集),以此来决定因子风险
%回望期交易日为252天,因子5个
%交易策略为:购买下一个交易日期望收益率最高的50只股票topN = 50;
%选用SP600小盘股做测试(此MATLAB二进制辑入丈件包含交易日,股票,开盘价,最高价,最低价,收盘价)
load('IJR 20080114');
mycls=fillMissingData(cl);
positionsTable=zeros (size(cl));
写dailyret的行是在不同时间段上的观察值
dailyret=(mycls一lagl(mycls))/lagl(mycls);
for t=lookback+1:length(tday)
% R的列是不同的观刻对象
R=dailyret(t-lookback+一:t.:)’;
%不考虑所有收益率缺失的股票
hasData=find(all(isfinite(R),2));
R=R(hasData,:);
avgR=smartmean(R,2);
%移去均值
R=R-repmat(avgR,[1 size(R,2)]);
%计算不同股票收益率的协方差拒阵
covR= smartcov(R');
% X是因子风险矩阵,B是因子收益率的方差
%用covR的特征值作为X的列向量
[X,B]=eig(covR);
%保留的因子数为numFactors
X(:,1:size(X,2)-numFactors) =[];
% b是从时间t-1到t的因子收益率
results=ols(R(:,end),X);b= results.beta;
% Rexp是假设因子收益率保持常数时。下一个时间段的期望收益率
Rexp=avgR+X*b;
[foo idxSort]=sort(Rexp,'ascend');
%做空期望收益率最低的50只股票
positionsTable(t,hasData(idxSort(1:topN)))=-1;
%做多期望收益率最高的50只股票
positionsTable(t,. ..
hasData(idxSort(end-opN+1:end)))=1;
end
%计算交易策略的每日收益率
ret=...
smartsum(backshift(1,positionsTable).*dailyret,2);
%计算交易策略的年化收益率
avgret=smartmean(ret)*252%收益率很低
%avgret=
%
%-1.8099
程序中使用了smartcov函数来计算多只股票日收益平向量的协方差矩阵。与MATLAB内置的cov函数不同,smartcov函数忽略了收益率缺失的交易日(包括NaN值)。
function y=smartcov(x)
% n个有限元素的协方差
% 行为观测值,列为变量
% 用N标准化,而非N-1
y= NaN (size(x,2) , size(x, 2 ));
xc= NaN(size(x));
goodstk=find(~all(isnan(x),1));
xc(:,goodstk)=...
x(:,goodstk)-repmat(smartmean(x(:,goodstk),1),...
[size(x,1)1];%移去均值
for m=1:length(goodstk)
for n=m:length(goodstk)
y(goodstk(m),goodstk(n))=...
smartmean(xc(:,goodstk(m)).
*..xc(:,goodstk(n)));
y(goodstk(n),goodstk(m))=y(goodstk(m) ,goodstk(n));
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27