
备好数据后,数据科学家还要做什么
在这个数据科学越来越火的时代,数据科学家的工作到底是怎样的呢?
数据科学越来越火,很多人都想转行入坑数据科学家,这当然是好事。可是很多人都以为数据科学、机器学习等等流行词对应的工作,就是把数据塞进Sckit-Learn这个算法库里而已。
事实远远没有那么简单,下面我带大家走进真实的数据科学世界。
让我们从数据搜集完成后开始讲起。
问题阐述
“数据消耗”反映了特定服务类别数据的下载和上传量,比如社交网络,音频等等。我们来看一个具体的例子。假设我们研究的是一个计数器,利用该计数器可以查看与亚马逊网络服务(Amazon Web Service,简称为AWS)连接的机器数量。
如果我们直接对原始数据进行分类,我们会得到如下结果:
我们可以注意到,这是对数据进行线性判别分析(Linear discriminant analysis,简称为LDA)后的二维示意图。理论上讲,LDA的结果可以体现出原数据的 ± 90%;虽然不是100%,但是这里我们可以看出,直接对数据进行分类完全没有意义。有人建议我换别的算法或者调整超参数,但是其实,把算法直接套在原数据上的想法糟透了。
理解数据
现在,我们来挖掘一番。数据到底长什么样?我强烈建议初学者多花些时间观察理解数据,而不要急着输入“from sklearn.cluster import KMeans”这样的代码行。这里我们研究一下这个例子的一个数据特征,但是请注意,大多数数据特征都是相似的。
下面是AWS计数器的结果(其实不是,但是我们就假定它是吧)
从上到下:总数,平均值,标准差,最小值,25分位,中位数,75分位,最大值
我们可以看到,几乎所有的数值都为0。不过您仔细看会发现,其实有些值达到3千万。您用这样的数值直接计算出来的距离值,再带入LDA算法中就不可能有意义。即使您缩小数据的规模使所有的数值都在0—1之间,那么绝大部分的数值也都会在0到大概0.0000005之间,对计算距离也没有帮助。
如果我们只看非零的数值,分布就很有意思了:
数据处理
上图看起来像是LogNormal分布。现在我们就可以进行简单的数据标准化了。采用Box-Cox法可以转化LogNormal分布。这个方法可以把包含LogNormal在内的许多分布尽可能的标准化。
转换的过程就是把下面公式中的lamda值最小化。
我们的数据集中有大量的0,所以lamda值最小化后的结果如下图所示:(请注意:我们需要大于0的结果,因此我们先给每个数值加上1之后再用公式计算)
您可以看到上图中大概在9的位置有一个小突起,这就是我们大多非0值的位置。从计算距离的角度看,现在我们的数据分布已经比原来的好太多倍了,但是仍然有进步的空间。
让我们重新审视这个例子中数据的背景。我们想要根据机器的行为对其分类。在“机器对机器”的世界里,机器的行为包含了大量信息。“机器使用了亚马逊网络服务”这件事听起来很滑稽,但其实含义非常重要。
我们给这些机器编码,让它们承担特定的任务,比如报告天气、展示广告等等。它们做任务的代码都是编写好的,因而它们不可能随机的开始在脸书或者其他平台上操作。
事实上,它们可以使用一项服务(比如说AWS)本身就包含了大量信息。基于上面的分析,我决定对数据集中非零的数值进行标准化,使其规模在0.5到1之间;而对值为零的数据点保持不变。那么怎么标准化呢?当然是采用Box-Cox转化法——而且只对非零值进行转化。
请看下图的结果比较。左图是变换所有数据后得到的位于0—1区间的分布。右图是放大的0.5—1区间的分布。
虽然说左图看起来没有比前面的方法提升很多,但是我向您保证,在后面应用算法的过程中两者的区别很大。
结果
下面我们对经过预处理的数据重新分类。不需任何手动调整我们就得到了如下结果。
结论
我发现人们常常看到算法就如同打了鸡血,一头扎进建模的过程中。有的人甚至说,你不需要理解算法背后的数学原理。
我不赞同这个观点。我认为还是应该理解一个算法的基本原理,至少要能理解到知道什么样的数据输入才是有意义的。
比如说,我们刚才举例用的K-Means算法的基本原理就是点之间的距离,那么当您拥有“千万”这样的数量级时,您就不能期望直接把数据带入算法就会获得合适的结果,因为这时数值范围太大了。
综上所述,一遍一遍地检查数据,直到对它了然于胸,然后再让这些高级的算法完成后续的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27