
大数据时代影响统计的三大思维转变
现在社会有一种观念,那就是大数据时代已经到来,上到国家,下到单位,都把大数据当做未来的发展战略。当大数据这一观点出现时,便引起了全球范围内广泛的反响,似乎所有的商业或组织活动都可视为大数据问题。大数据时代的到来,正在对社会济各个方面产生冲击,而与数据打交道的“统计”学,大数据概念将对其产生何种影响?产生什么样的影响呢?
统计学是关于数据的科学,即研究如何收集、整理和分析数据的科学。数据是依据,是根本,是一个分析结果的灵魂,是统计方法生命力的根源所在,大数据时代的统计首先要适应三个重大的思维转变。
第一,不分析少量的样本数据,而是要分析与事物相关的所有数据。
统计往往希望用尽可能少的数据来证实可能重大的发现、假设等,小数据时代一般采用随机采样,用最少的数据获得最多的信息。统计抽样是在技术受限的条件下,解决当时存在的一些问题而产生的;如今的大数据时代,计算和制表不再像过去那样困难,感应器、手机导航、网站点击和微博等能够收集大量数据,而计算机也能够轻易处理。因此,在处理大数据时不再来用随机抽样的方法,而利用所有数据进行分析。例如:谷歌流感趋势预测并不是依赖于对随机抽样的分析,而是分析了整个美国几十亿条互联网检索记录而得到的结论。分析整个数据库,而不是对一个样本进行分析,能够提高微观层面分析的准确性,甚至能够推测出任何特定尺度的数据特征。
第二,不再追求百分百精确性,接受数据的复杂多样性。
与大数据不同的是,对小数据而言,最基本、最重要的要求是减少误差,保证数据质量。生活于信息时代的我们,掌握的数据越来越全面,不再只包括手头现象的一点点可怜数据,而是包括了与之相关的大量级数据甚至全部数据。人们不再那么担心某个数据点对整套分析的不利影响,要做的是接受纷繁的数据并从中受益。大数据要求人们能够接受混乱和允许不精确性,例如一个小商店晚上打烊的时候要把收银台里的每分钱都数清楚,但如果用“分”这个单位来精确计算国内生产总值显然不适用。大数据时代,随着数据规模的扩大,人们对数据精确度的痴迷将逐步减弱。
第三,不再探求难以捉摸的因果关系,转而关注事物的相关关系。
大数据时代,由于坐拥海量数据和良好的机器计算能力,相关关系分析为人们提供了一系列新的视野和有用的预测,能够找出新种类数据间的相互联系来解决日常需要。例如:如果电子医疗记录显示橙汁和阿司匹林的特定组合可以治疗癌症,那么找出具体的致病原因就没有通过相关关系而获得的这种治疗方法来得重要;亚马逊根据用户在其网站上的类似查询来进行产品推荐,也是大数据相关关系的典型应用。通过探求“是什么”而不是“为什么”,能够帮助人们更好地了解这个世界。
大数据时代已经到来,它实实在在地在影响我们的生活,给予我们便利,而随着它的深度渗入,我们的改变是必然的,转变思维,不一成不变,才是我们发展的所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16