京公网安备 11010802034615号
经营许可证编号:京B2-20210330
区块链共识算法
1、分布式系统案例:售票系统
分布式系统的共识算法
在一个分布式系统中,如何保证集群中的所有节点中的数据完全相同且能够对某个提案(proposal)达成一致是分布式系统正常工作的核心问题,而共识算法就是用来保证分布式系统一致性的方法。
2、区块链和共识算法的关系
数字货币->双花问题->线性账目(区块链)->共识
3、分布式系统一致性
强一致性:任何时刻保持一致
顺序一致性(Sequential Consistency):Leslie Lamport1979年经典论文《How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs》中提出,是一种比较强的约束,保证所有进程看到的全局执行的顺序(total order)一致,且每个进程看自身的执行(total order)跟实际发生顺序一致。例如某进程先执行A,后执行B,则实际得到的全局结果中就应该为A在B前面,而不能反过来。同时所有其他进程在全局上也应该看到这个顺序。顺序一致性实际上限制了各进程内的偏序关系,但不在进程间按照物理时间进行全局排序。
线性一致性(Linearizability Consistency ):Maurice P.Herlihy与Jeannette M.Wing在1990年经典论文《Linearizability:A Correctness Condition for Concurrent Objects》中共同提出,在顺序一致性前提下加强了进程间的操作顺序。形成唯一的全局顺序(系统等价于是顺序执行,所有进程看到的所有操作的顺序都一致,并且跟实际发生顺序一致),是很强的原子性保证。但是比较难实现,目前基本上要么依赖于全局的时钟或锁,要么通过一些复杂算法实现,性能往往不高。
弱一致性:某一时刻保持一致
强一致性的系统往往比较难实现。很多时候,人们发现实际需求并没有那么强,可以适当放宽一致性要求,降低系统实现的难度。例如在一定约束下实现所谓最终一致性(Eventual Consistency),即总会存在一时刻(而不是立刻),系统达到一致的状态,这对于大部分的Web系统来说已经足够。这一类弱化的一致性,被笼统称为弱一致性(Weak Consistency)。
不能达成一致性的两种情况
我们假设通讯是可靠的。那么我们把照成不能达成一致性的故障情况分为两种:
1、节点只是故障状态,不存在恶意节点,那么我们称“非拜占庭错误”。
2、存在恶意节点的分布式网络,我们称为“拜占庭错误”。
我们区块链面临的一致性问题为“拜占庭将军问题”。
4、分布式系统的同步和异步
同步系统:消息不丢失且秒到
异步系统:消息有延误且可能丢失
5、非拜占庭错误的两种解决方案
1、PAXOS
核心思想:Paxos解决这一问题利用的是选举,少数服从多数的思想,只要2N+1个节点中,有N个以上同意了某个决定,则认为系统达到了一致,并且按照Paxos原则,最终理论上也达到一致,不会再改变。这样的话,客户端不必与所有服务器通信,选择与大部分通信即可;也无需服务器都全部处于工作状态,有一些服务器挂掉,只有保证半数以上存活着,整个过程也能持续下去。
2、Raft
相比paxos的优点是容易理解,容易实现。它强化了leader的地位,把整个协议可以清楚的分割成两部分,并利用日志的连续性做了一些简化。
(1)Leader在时,由Leader同步日志。
(2)Leader挂掉了,选一个新Leader选举算法。
6、拜占庭将军的解决方案
对于可以容忍拜占庭错误的算法:PBFT、中本聪共识(POW)、POS和DPOS四种算法。
1、PBFT:更加实用的拜占庭容错方法。早期的BFT的缺陷:1、假定是同步场景;2、性能太慢(超过100个节点则不可用)。
PBFT算法的核心理论是n>=3f+1 : n是系统中的总节点数,f是允许出现故障的节点数。换句话说,如果这个系统允许出现f个故障,那么这个系统必须包括n个节点,才能解决故障。
PBFT算法在区块链中的应用
步骤:
1.从全网节点选举出一个主节点(Leader),新区块由主节点负责生成;
2.Pre-Preare:每个节点把客户端发来的交易向全网广播,主节点0将从网络收集到需放在新区快内的多个交易排序后存入列表,并将该列表向全网广播,扩散至1 2 3;
3.Preepare:每个节点接收到交易列表后,根据排序模拟执行这些交易。所有交易执行完后,基于交易结果计算新区快的哈希摘要,并向全网广播,1->023, 2->013,3为宕机无法广播;
4.Commit:如果一个节点收到的2f(f为可容忍的拜占庭节点数)个其他节点发来的摘要都和自己相等,就向全网广播一条commit消息。
5.Reply:如果一个节点收到2f+1条commit的消息,即可提交新区块及其他交易到本地的区块链和状态数据库。
2、中本聪共识(POW)
POW:一组通过算法生成的数据,难于生成而易于验证。1993年由Cynthia Dwork and Moni NAOR提出。
比特币使用的Hashcash proof of work由Adan Back在1997年发明,用于防止垃圾邮件和拒绝服务器攻击。Hashcash proof of work被中本聪用于比特币的挖矿。挖矿的过程是选择一个节点作为区块链生产者。
3、POS共识
POS:最早是由网名为“QuantumMechanic”的网友在比特币论坛中提出。其核心思想为拥有币权的人可以进行选举,选举出来大家最终谁来生成区块。
Native POS的面临的问题:nothing_to_stake
就如桌上有十个文件,每个人会在一个文件上签名,最后选出签名最多的一个文件,谁在签名最多的文件上签名就给谁发币。但有些作弊的人,在十个文件上都签字,最终不管哪个文件签名最多,它都能拿到币,这就nothing_to_stake。
现在以太坊用的共识算法是CASPER,CASPER是改进版的POS。
CASPER算法 、Native POS、POW对无力攻击的解决办法:
Native POS:
POS链上产生了分叉,不投票什么也没有,在A分支上投票得到的利益是0.9,在B分支上投票获得的利益是0.1,如果在两个分支上都投票获得的利益=0.1+0.9=1。
POW:
pow链上产生了分叉,不投票什么也没有,在A分支上投票得到的利益是0.9,在B分支上投票获得的利益是0.1,如果在两个分支上都投票获得的利益=0.1/2+0.9/2=0.5,因为POW要分散算力。
CASPER:
CASPER链上产生了分叉,不投票什么也没有,在A分支上投票得到的利益是0.9,在B分支上投票获得的利益是0.1,如果在两个分支上都投票获得的利益=0.1+0.9 -5 = -4,两边都投票会扣取你的5个保证金。还有一种更严格的方法,虽然你没有在两个分支上都投票,但你只有在短的分支上投票就扣你5个保证金。
4、DPOS共识:Delegated Proof of Stake
DPOS由BM提出:由代币持有者选择见证人节点,由一组见证人通过round-robi的方式轮流产生区块。在15/21个人对一个区块进行签名,然后区块得到确认。
DPOS对Nothing_to_stake的应对方案:让生产者被淘汰。“Miners”are now generally public,known individuals rather than anonymous individuals.
为什么是15/21个人可以达到共识?(n-(n-1)/3) 所以(21-(21-1)/3)=15
DPOS的理念:由持有者进行投票,最大化的分散持有者的规模,最小化的代价来加固网络(无需挖矿),最大化网络性能(超级节点),最小化运行网络成本(EOS每年会曾发代币的5%平分给超级节点)。
而DPOS就像一个公司一样运行,股东选举出董事会,董事会成员轮流生成区块,验证通过后上链。区块生产者既没有创造无效的区块的权力,也没有改变社区共识的权利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27