
那么这个代码是用于建模初期,你为了大概了解变量的一个基本特征写的,不是最优分组哈,因为这个代码是将变量最多分为12组,分这么多组的原因也是为了更好的观察特征而已啦,你要是觉得太多组,你可以改下树的深度这些调整一下,这里关于变量特征怎么看,我就不说了.....
%macro
zhandapao(data,DVAR,id,dir);
proc datasets lib=work nodetails;
delete
varname_total;
run;
/*建立数值型数据集*/
%let lib=%upcase(%scan(&data.,1,'.'));
%letdname=%upcase(%scan(&data.,2,'.'));
%globalvar_list var_num;
proc sql noprint;
select name,count(*) into :var_list separated by' ',:var_num
from sashelp.VCOLUMN
where left(libname)="&lib."and
left(memname)="&dname."and
type="num"and
lowcase(name)^=lowcase("&DVAR.")
and lowcase(name)^="&id.";
quit;
%put
&var_list.;
/*把数值型变量定义为宏变量*/
%doi=1%to&var_num.;
%letnumvar_name_&i.=%scan(&var_list.,&i.);
%put&numvar_name_1.;
proc split data=&data.splitsize=300
maxbranch=2
MAXDEPTH=5nsurrs=5
assess=lift criterion=gini;
input &&numvar_name_&i./level=interval;
target &DVAR./level=binary;
Score data=&data.out=d_&&numvar_name_&i.;
code file="&dir.treecode_tic_&&numvar_name_&i..sas";
describe file="&dir.treerule_tic_&&numvar_name_&i..txt";
run;
data n_D_&&numvar_name_&i.;
set d_&&numvar_name_&i.;
%include"&dir.treecode_tic_&&numvar_name_&i..sas";
rename p_&DVAR.1=p_&&numvar_name_&i.;
run;
proc sql noprint;
select count(*),max(&&numvar_name_&i.),min(&&numvar_name_&i.)into:total, :max ,:min from n_D_&&numvar_name_&i.;
quit;
data n_D_&&numvar_name_&i.;
set n_D_&&numvar_name_&i.;
if &min.<=&&numvar_name_&i.<=&max.
then flag="no_null";
else flag="null";
run;
proc sql;
select count(*) into:is_null from
n_D_&&numvar_name_&i.;
quit;
%if&is_null.>0%then%do;
proc sql noprint;
select count(*),max(&&numvar_name_&i.),min(&&numvar_name_&i.)into:total,:max ,:min from n_D_&&numvar_name_&i.;
create table total as
select"&&numvar_name_&i."as
varname,
min(&&numvar_name_&i.) as interval_1,
max(&&numvar_name_&i.) as interval_2,
compress(put(min(round(&&numvar_name_&i.,0.0001)),best32.))||'-'||compress(put(max(round(&&numvar_name_&i.,0.0001)),best32.)) as interval,
sum(&DVAR.) as bad_num,
count(*) as total_num,
count(*)/&total.as num_rate,
sum(&DVAR.)/count(*) as bad_rate
from n_D_&&numvar_name_&i.
group by p_&&numvar_name_&i.
union all
select"&&numvar_name_&i."as varname,
-9999as interval_1,
-9999as interval_2,
'null'as interval,
sum(&DVAR.) as bad_num,
count(*) as total_num,
count(*)/&total.as num_rate,
sum(&DVAR.)/count(*) as bad_rate
from n_D_&&numvar_name_&i.(where=(&&numvar_name_&i.=.))
group by p_&&numvar_name_&i.
order by interval_1;
quit;
%end;
%else%do;
proc sql noprint;
select count(*),max(&&numvar_name_&i.),min(&&numvar_name_&i.)into:total,:max ,:min from n_D_&&numvar_name_&i.;
create table total as
select"&&numvar_name_&i."as varname,
min(&&numvar_name_&i.) asninterval_1,
max(&&numvar_name_&i.) as interval_2,
compress(put(min(round(&&numvar_name_&i.,0.0001)),best32.))||'-'||compress(put(max(round(&&numvar_name_&i.,0.0001)),best32.)) as interval,
sum(&DVAR.) as bad_num,
count(*) as total_num,
count(*)/&total.as num_rate,
sum(&DVAR.)/count(*) as bad_rate
from n_D_&&numvar_name_&i.
group by p_&&numvar_name_&i.
order by interval_1;
quit;
%end;
data &&numvar_name_&i.;
set total;
group=_n_;
run;
proc append base=varname_total
data=&&numvar_name_&i.
force;run;
proc datasets lib=work nodetails;
delete total n_: d_:
&&numvar_name_&i.
_namedat;
quit;
%end;
%mend;
解释一下这个代码怎么用,这个宏已经是封装好了的,直接填入参数就可以用了:
zhandapao(data,DVAR,id,dir);
data:填入你的数据集
DVAR:填入你的因变量
id:填入你的数据集的主键
dir:这个你需要填一个路径,是用来放决策树的规则的文件下,决策树的规则文件你看不懂没关系,你填个类似“F/DD”的路径就可以了。
例子:%zhandapao(DD.TEST_DATA,y,CUSTOMER_id,D:test_1);
结果图就是这样子:
那么今天的更新就到这里啦
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14