京公网安备 11010802034615号
经营许可证编号:京B2-20210330
那么这个代码是用于建模初期,你为了大概了解变量的一个基本特征写的,不是最优分组哈,因为这个代码是将变量最多分为12组,分这么多组的原因也是为了更好的观察特征而已啦,你要是觉得太多组,你可以改下树的深度这些调整一下,这里关于变量特征怎么看,我就不说了.....
%macro
zhandapao(data,DVAR,id,dir);
proc datasets lib=work nodetails;
delete
varname_total;
run;
/*建立数值型数据集*/
%let lib=%upcase(%scan(&data.,1,'.'));
%letdname=%upcase(%scan(&data.,2,'.'));
%globalvar_list var_num;
proc sql noprint;
select name,count(*) into :var_list separated by' ',:var_num
from sashelp.VCOLUMN
where left(libname)="&lib."and
left(memname)="&dname."and
type="num"and
lowcase(name)^=lowcase("&DVAR.")
and lowcase(name)^="&id.";
quit;
%put
&var_list.;
/*把数值型变量定义为宏变量*/
%doi=1%to&var_num.;
%letnumvar_name_&i.=%scan(&var_list.,&i.);
%put&numvar_name_1.;
proc split data=&data.splitsize=300
maxbranch=2
MAXDEPTH=5nsurrs=5
assess=lift criterion=gini;
input &&numvar_name_&i./level=interval;
target &DVAR./level=binary;
Score data=&data.out=d_&&numvar_name_&i.;
code file="&dir.treecode_tic_&&numvar_name_&i..sas";
describe file="&dir.treerule_tic_&&numvar_name_&i..txt";
run;
data n_D_&&numvar_name_&i.;
set d_&&numvar_name_&i.;
%include"&dir.treecode_tic_&&numvar_name_&i..sas";
rename p_&DVAR.1=p_&&numvar_name_&i.;
run;
proc sql noprint;
select count(*),max(&&numvar_name_&i.),min(&&numvar_name_&i.)into:total, :max ,:min from n_D_&&numvar_name_&i.;
quit;
data n_D_&&numvar_name_&i.;
set n_D_&&numvar_name_&i.;
if &min.<=&&numvar_name_&i.<=&max.
then flag="no_null";
else flag="null";
run;
proc sql;
select count(*) into:is_null from
n_D_&&numvar_name_&i.;
quit;
%if&is_null.>0%then%do;
proc sql noprint;
select count(*),max(&&numvar_name_&i.),min(&&numvar_name_&i.)into:total,:max ,:min from n_D_&&numvar_name_&i.;
create table total as
select"&&numvar_name_&i."as
varname,
min(&&numvar_name_&i.) as interval_1,
max(&&numvar_name_&i.) as interval_2,
compress(put(min(round(&&numvar_name_&i.,0.0001)),best32.))||'-'||compress(put(max(round(&&numvar_name_&i.,0.0001)),best32.)) as interval,
sum(&DVAR.) as bad_num,
count(*) as total_num,
count(*)/&total.as num_rate,
sum(&DVAR.)/count(*) as bad_rate
from n_D_&&numvar_name_&i.
group by p_&&numvar_name_&i.
union all
select"&&numvar_name_&i."as varname,
-9999as interval_1,
-9999as interval_2,
'null'as interval,
sum(&DVAR.) as bad_num,
count(*) as total_num,
count(*)/&total.as num_rate,
sum(&DVAR.)/count(*) as bad_rate
from n_D_&&numvar_name_&i.(where=(&&numvar_name_&i.=.))
group by p_&&numvar_name_&i.
order by interval_1;
quit;
%end;
%else%do;
proc sql noprint;
select count(*),max(&&numvar_name_&i.),min(&&numvar_name_&i.)into:total,:max ,:min from n_D_&&numvar_name_&i.;
create table total as
select"&&numvar_name_&i."as varname,
min(&&numvar_name_&i.) asninterval_1,
max(&&numvar_name_&i.) as interval_2,
compress(put(min(round(&&numvar_name_&i.,0.0001)),best32.))||'-'||compress(put(max(round(&&numvar_name_&i.,0.0001)),best32.)) as interval,
sum(&DVAR.) as bad_num,
count(*) as total_num,
count(*)/&total.as num_rate,
sum(&DVAR.)/count(*) as bad_rate
from n_D_&&numvar_name_&i.
group by p_&&numvar_name_&i.
order by interval_1;
quit;
%end;
data &&numvar_name_&i.;
set total;
group=_n_;
run;
proc append base=varname_total
data=&&numvar_name_&i.
force;run;
proc datasets lib=work nodetails;
delete total n_: d_:
&&numvar_name_&i.
_namedat;
quit;
%end;
%mend;
解释一下这个代码怎么用,这个宏已经是封装好了的,直接填入参数就可以用了:
zhandapao(data,DVAR,id,dir);
data:填入你的数据集
DVAR:填入你的因变量
id:填入你的数据集的主键
dir:这个你需要填一个路径,是用来放决策树的规则的文件下,决策树的规则文件你看不懂没关系,你填个类似“F/DD”的路径就可以了。
例子:%zhandapao(DD.TEST_DATA,y,CUSTOMER_id,D:test_1);
结果图就是这样子:
那么今天的更新就到这里啦
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27