京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1. 神经网络
这是一个常见的神经网络的图:

这是一个常见的三层神经网络的基本构成,Layer L1是输入层,Layer L2是隐含层,Layer
L3是隐含层,当我们输入x1,x2,x3等数据时,通过隐含层的计算、转换,输出你的期望,当你的输入和输出是一样的时候,成为自编码模型(Auto-Encoder),而当你输入和输出是不一致的时候,也就是我们常说的人工神经网络。

2. 如何计算传播
首先我们先构建一个简单的网络层作为例子:
在这个网络层中有
第一层输入层:里面包含神经元i1,i2,截距:b1,权重:w1,w2,w3,w4
第二层是隐含层:里面包含h1,h2,截距:b2,权重:w5,w6,w7,w8
第三层是输出层:里面包含o1,o2
我们使用sigmoid作为激活函数
假定我们输入数据i1: 0.02 i2: 0.04 截距b1:0.4 b2:0.7 期望的输出数据o1:0.5 o2:0.9
未知的是权重w1,w2,w3,w4,w5,w6,w7,w8
我们的目的是为了能的到o1:0.5 o2:0.9的期望的值,计算出w1,w2,w3....w8的权重值
先假如构造一个权重w1,w2,w3.....w8的值,通过计算获取到最佳的w1,w2,w3....w8的权重
权重的初使值:
w1=0.25
w2=0.25
w3=0.15
w4=0.20
w5=0.30
w6=0.35
w7=0.40
w8=0.35
2.1 前向传播
2.1.1 输入层到隐含层
NET(h1)=w1*i1+w2*i2+b1=0.25*0.02+0.25*0.04+0.4=0.005+0.01+0.4=0.415
神经元h1到输出h1的激活函数是sigmoid
OUT(h1)=1/(1+e^(-NET(h1)))=1/(1+0.660340281)=0.602286177
同理我们也可以获取OUT(h2)的值
NET(h2)=w3*i1+w4*i2+b1=0.15*0.02+0.20*0.04+0.4=0.003+0.008+0.4=0.411
OUT(h2)=1/(1+e^(-NET(h2)))=1/(1+0.662986932)=0.601327636
2.1.2 从隐含层到输出层
计算输出层的神经元o1, o2的值,计算方法和输出层到隐含层类似
NET(o1)=w5*h1+w6*h2+b2=0.3*0.602286177+0.35*0.601327636+0.7=0.180685853+0.210464672+0.7=1.091150525
OUT(o1)=1/(1+e^(-NET(o1)))=1/(1+0.335829891)=0.748598311
同理
NET(o2)=w7*h1+w8*h2+b2=0.4*0.602286177+0.35*0.601327636+0.7=0.240914471+0.210464672+0.7=1.151379143
OUT(o2)=1/(1+e^(-NET(o2)))=1/1.316200383=0.759762733
o1:0.748598311 o2:0.759762733 距离我们期望的o1:0.5 o2:0.9还是有很大的距离
2.2 计算总误差



我们来计算每一个公式的偏导:
,则复合函数
的导数
为:



:











数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31