京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你应该知道的模型评估的五个方法
好久没更新了,我怕再不更,我要掉粉了,这次来更新的是模型评估的常见的五个方法:
1、混淆矩阵。
2、提升图&洛伦兹图。
3、 基尼系数
4、ks曲线
5、roc曲线。
1
混淆矩阵不能作为评估模型的唯一标准,混淆矩阵是算模型其他指标的基础,后面会讲到,但是对混淆矩阵的理解是必要的。
模型跑出来的“Y”值为每个客户的预测违约概率,可以理解为客户的有多大的可能违约。把概率等分分段,y坐标为该区间的人数,可以得到这样子一个图表。
可以看到图中这条线,一切下去,在左边就算是违约的客户,那么右边就是正常的客户,本身模型没办法百分百的判断客户的状态,所以cd就算是会误判的,d本来是是左边这个小山的客户,那就是坏客户,但是模型预测他的概率比较高别划分到了好客户的这边了,所以d就是被预测为好客户的坏客户,同样的道理,c就是被预测为坏客户的好客户。
2
提升图&洛伦兹图
假设我们现在有个10000的样本,违约率是7%,我们算出这10000的样本每个客户的违约概率之后降序分为每份都是1000的记录,那么在左图中,第一份概率最高的1000个客户中有255个违约的。违约客户占了全部的36.4。如果不对客户评分,按照总体的算,这个分组;理论上有70个人是违约的。
把刚才的图,每组中的随机违约个数以及模型违约个数化成柱形图,可以看到假设现在是p值越大的客户,违约概率越大,那就是说这里第一组的1000个人就是概率倒序排序之后的前1000个人。那么可以看到通过模型,可以识别到第一组的客户违约概率是最高的,那么在业务上运用上可以特别注意这部分客户,可以给予拒绝的处理。
那么洛伦兹图就是将每一组的一个违约客户的个数累计之后连接成一条线,可以看到在12组的时候,违约人数的数量上升是一个比较明显的状态,但是越到后面的组,违约人数上升的越来越少了。那么在衡量一个模型的标准就是这个条曲线是越靠近y轴1的位置越好,那样子就代表着模型能预测的违约客户集中在靠前的几组,所以识别客户的效果就是更好。
3
基尼系数
洛伦茨曲线是把违约概率降序分成10等分,那么基尼统计量的上图是把违约概率升序分成10等分,基尼统计量的定义则为:
G的值在0到1之间,在随机选择下,G取0。G达到0.4以上即可接受。
4
ks值
ks曲线是将每一组的概率的好客户以及坏客户的累计占比连接起来的两条线,ks值是当有一个点,好客户减去坏客户的数量是最大的。那么ks的值的意义在于,我在那个违约概率的点切下去,创造的效益是最高的,就图中这张图来说就是我们大概在第三组的概率的中间的这个概率切下,我可以最大的让好客户进来,会让部分坏客户进来,但是也会有少量的坏客户进来,但是这已经是损失最少了,所以可以接受。那么在建模中是,模型的ks要求是达到0.3以上才是可以接受的。
5
roc
灵敏度可以看到的是判断正确的违约客户数,这里给他个名字为违约客户正确率(tpr),误判率就是判断错误的正常客户数(fpr)。特殊性就是正常客户的正确率,那么roc曲线是用误判率和违约客户数画的一条曲线。这里就需要明确一点就是,我们要的效果是,tpr的越高越好,fpr是越低越好。ROC曲线就是通过在0-1之间改变用于创建混淆矩阵的临界值,绘制分类准确的违约记录比例与分类错误的正常记录比例。具体我们来看图。
我们首先来看A,B点的含义,A点的TPR大概为0.7左右,FPR大概是0.3左右,那么就是说假设我错误的将30%坏客户判断是坏的,那么可以识别70%的客户肯定坏的。B点的TPR大概为0.3左右,FPR大概是0.7左右,那就是我错误的将70%好客户当做坏客户,只能得到30%的客户是确定 坏客户。所以这么说的话,点越靠近左上方,模型就是越好的,对于曲线也是一样的。
总结
我个人建议,要依据不同的业务目的,选取不同的评估方式, 基尼系数、提升图可以用于用人工审批情况的业务目的,不同的分组突出客户的质量的高低,ks、roc可以用于线上审批审核的情况,根据最小损失公式,计算出概率点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31