京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1 逻辑回归
首先逻辑回归是线性回归衍生过来的,假设在二维空间上,本质上还是一条线,那么在三维空间,他就是一个平面。把数据分成两边,就是直的不能再直的一条线或者一个平面。那么假设现在我们有两个变量,就是图中这两个变量,为什么假设y=1是坏客户的话,根据图中可以看到,单个变量的划分并不可以把两种类型的客户分的很好,要两个变量相互作用,假设x1为查询次数,x2为在还贷款笔数,那可以看到当x1小以及x2比较小的时候,那么客户肯定在左下角的地方,那么当他其中一项比较高的时候就会趋于右上角,x1 x2都高的时候,就是越过分割线,落于分割线的上方了。这里我们可以看到,x1 x2是两个有趋势性的变量才可以达到这种这么好的一个分类效果。
那么现在假设数据是以下这种:
可以看到变量的趋势跟y的分类没有什么关系的时候,这时候逻辑回归就显得很鸡肋,分的效果一点都不好。
2 决策树
决策树。刚才说的是逻辑回归是一条直到不能再直的直线或者平面,那么决策树就是一条会拐弯,但是不能有角度的,永远直行或者90度拐的直线或者面,看下图,你可以理解为决策树就是一条贪吃蛇,他的目标就是把好坏客户分的很清晰明了,要是贪吃蛇过分的贪吃就会造成过拟合,那么过拟合是啥,就是你问你喜欢的妹纸,妹纸你喜欢什么样的男生,妹纸说,我喜欢长的好看的,帅气,温柔体贴,会做饭的,巴拉巴拉一大堆,足足100多条,然后你实在太喜欢妹纸,所以按照她的要求,到头来你真的跟妹纸在一起了,妹纸说,其实我只要你长得好看就可以了,其他的100多条都是无所谓的。拉回来决策树,决策树适应的数据假设像逻辑回归那种数据的话,其实按照决策树的这种贪吃蛇的方式其实还是很难分的,所以决策树适用的数据是变量与因变量呈现一个u型分布的数据,就是两头是一类,单峰聚集了另外一类数据。你在变量特征分析的,看到变量都是呈现这种趋势的,你就要暗喜了,老子要用决策树立功了!!!
3 支持向量机
支持向量机,要是没有数学基础的人看支持向量机的把低维的数据转化成高维可以在高维空间分类的算法这句话时候估计是一脸懵逼,我以前也是很懵逼,这到底是啥,我们以只有两个变量的举个例子,譬如你现在相区分一群客户的好坏,这时候就给出这群人的两个变量,查询次数和贷款次数,然后这时候你通过某些什么开方啊,幂次数,取对数的方式啊,你刚好拟合除了三元方程,这条方程你把身高体重的数据输进去,算出来的第三个未知数在这条方程里面的,就是男的,在这方程里面就算女的,这样子可能你不是很清楚,请看下图
刚才我们把数据丢进入,支持向量机帮我们这份数据拟合了这个圆,把这两类数据分的像图中的这样子很好,那么这时候我们需要这条圆的方程,产生变量的运用口径,这条方程是:
25=(x-5)2+(y-5)2 那么这时候当贷款次数和查询次数分别减5再2次幂的时候如果数小于25那么就是好客户,假设大于25就是坏客户。支持向量机是在除了变量所有的维度之外又给了他一个维度之后,把拟合的方程再投放在原来的维度空间。支持向量机可以适用的数据那么就是在你用决策树和逻辑回归走投无路的时候就可以用支持向量机了,但是就像我们刚才得出这道方程一样,出来的变量口径是没有逻辑的,他可能要变量开方,取对数,假设你这模型要跟业务去解释的时候,我就不知道你要想多少套路了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27