京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习中的参数与超参数之间的区别
机器学习中的模型参数和模型超参数在作用、来源等方面都有所不同,而模型超参数常被称为模型参数,这样,很容易对初学者造成混淆。本文给出了模型参数和模型超参数的定义,并进行了对比,指出了二者本质上的区别:模型参数是模型内部的配置变量,可以用数据估计模型参数的值;模型超参数是模型外部的配置,必须手动设置参数的值。
我们在做研究的时候,会碰到很多术语。有时,在不同的研究领域还会出现同样名称的术语。比如,统计学、经济学中经常使用的“模型参数”和“模型超参数”,在机器学习中也同样存在。
机器学习领域中的“模型参数”“模型超参数”在作用、来源等方面都有所不同,初学者如果对二者没有明确的认识,学习起来往往会比较吃力,尤其是那些来自统计学和经济学领域的初学者们。
为了让大家在应用机器学习时,对“参数模型”和“超参数模型”有一个清晰的界定,在这篇文章中,我们将具体讨论这两个术语。
首先,我们来看一下“参数”是什么?
参数作为模型从历史训练数据中学到的一部分,是机器学习算法的关键 。
统计学中的“参数”:
在统计学中,你可以假设一个变量的分布,比如高斯分布。高斯分布的两个参数分别是平均值(μ)和标准差(sigma)。这在机器学习中是有效的,其中这些参数可以用数据估计得到并用作预测模型的一部分。
编程中的“参数”:
编程中可以将参数传递给函数。在这种情况下,参数是一个函数参数,可以有一个值范围。在机器学习中,您正在使用的具体模型就是函数,需要参数才能对新数据进行预测。
“参数”和“模型”有什么关系?
根据经典的机器学习文献,可以将模型看作假设,而参数是根据特定的数据集对假设进行的具体调整。
模型是否具有固定或可变数量的参数,决定了模型是“参数”模型或“非参”模型。
什么是模型参数?
简单来说,模型参数就是模型内部的配置变量,可以用数据估计它的值。
具体来讲,模型参数有以下特征:
进行模型预测时需要模型参数。
模型参数值可以定义模型功能。
模型参数用数据估计或数据学习得到
模型参数一般不由实践者手动设置。
模型参数通常作为学习模型的一部分保存。
通常使用优化算法估计模型参数,优化算法是对参数的可能值进行的一种有效搜索。
模型参数的一些例子包括:
人造神经网络中的权重。
支持向量机中的支持向量。
什么是模型超参数?
模型超参数是模型外部的配置,其值不能从数据估计得到。
具体特征有:
模型超参数常应用于估计模型参数的过程中。
模型超参数通常由实践者直接指
模型超参数通常可以使用启发式方法来设置。
模型超参数通常根据给定的预测建模问题而调整。
怎样得到它的最优值: 对于给定的问题,我们无法知道模型超参数的最优值。但我们可以使用经验法则来探寻其最优值,或复制用于其他问题的值,也可以通过反复试验的方法。
模型超参数的一些例子包括:
训练神经网络的学习速率。
支持向量机的C和sigma超参数。
k邻域中的k。
“模型参数”和“模型超参数”
二者的联系:
当针对特定问题调整机器学习算法时,例如在使用网格搜索或随机搜索时,你将调整模型或命令的超参数,以发现一个可以使模型预测最熟练的模型参数。许多模型中重要的参数无法直接从数据中估计得到。例如,在K近邻分类模型中...这种类型的模型参数被称为调整参数,因为没有可用的分析公式来为其计算一个合适的值。
区分:
模型超参数通常被称为模型参数,这种叫法很容易让人产生误解。解决这个问题的一个很好的经验法则如下:如果你必须手动指定一个“模型参数”,那么它可能就是一个模型超参数。
总结
读完这篇文章可以了解模型参数和模型超参数的明确定义和区别。
总而言之,模型参数是从数据中自动估计的,而模型超参数是手动设置的,并用于估计模型参数的过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12