京公网安备 11010802034615号
经营许可证编号:京B2-20210330
支持向量机算法在深度学习没有火起来的2012年前,在机器学习算法中可谓是霸主地位,其思想是在二分类或者多分类任务中,将类别分开的超平面可能有很多种,那么哪一种的分类效果是最好的呢?这里引入了支撑向量的概念,我们总可以在几个类别的分界面处找到类别的一些样本点,以这些样本点的中垂线为平面的这个分界面可以使得类别中的点都离分界面足够远,那么这个平面就是最理想的分割超平面。
注意:SVM顾名思义,该算法只用到了一些支撑样本将两类或者多类样本分开的~~
SVM分为线性可分SVM,线性SVM和非线性SVM,后两者用到了核函数。
一、SVM中的数学:
1.凸优化
2.核函数
3.拉格朗日乘子法
二、SVM公式推导
基本定义(以二分类为例):
分割平面:
是特征空间转换函数,简单地,
目标值属于{-1,1},通过sign(y(x))将样本分类为1或者-1
1.线性可分SVM(样本本身线性可分)
1.1 目标函数:遍历所有的x,对离分割面最近的x中,找到一组w,b,使得离该线最近的x到该直线的距离最大
变形达到:
整理在得到最终的目标函数:
1.2 求解目标函数,引入拉格朗日乘子法和KKT条件:
上式分别对w,b求导为0,并代入原式中,变形为求解alpha的约束最优化问题:
最终得到的w,b以及超平面分别是:
2.线性支持SVM(样本本身线性不可分)
2.1 引入松弛因子,目标函数和约束条件变为:
给定松弛因子,相当于引入了正则项,C->无穷大,相当于没有惩罚,所有样本眼分对,不容忍错误,容易overfitting,C->0,则过渡带宽,容忍有错误,model范化能力好,能防止overfitting
2.2 求解目标函数,仍用拉格朗日乘子法,,最终的目标函数为:
求解最优的alpha,并求得w和b.
3.非线性SVM,引入核函数
3.1 思想:不可分的样本,通过核函数映射到新的高维特征空间,使得样本变得可分,常见的核函数有多项式,高斯和sigmoid核函数,公式如下:
一般地,在不知道更多信息的时候使用高斯核函数是最稳妥的,高斯函数(RBF,径向基函数)是一个映射到无穷维的函数。
引入的
代表了核函数映射到高维空间的胖瘦,其值大,则胖乎乎,其值小,则瘦兮兮~~
三、代码实现SVM
import numpy as np
from sklearn.svm import SVR
from sklearn.grid_search import GridSearchCV # 0.17 grid_search
import matplotlib.pyplot as plt
if __name__ == "__main__":
N = 50
np.random.seed(0)
x = np.sort(np.random.uniform(0, 6, N), axis=0)
y = 2*np.cos(x) + 0.1*np.random.randn(N)
x = x.reshape(-1, 1)
model = SVR(kernel='rbf')
c = np.logspace(-2, 2, 10)
gamma= np.logspace(-2, 2, 10)
svr = GridSearchCV(model, param_grid={'C': c, 'gamma': gamma}, cv=5)
svr.fit(x, y)
print 'C和gamma的最优参数:\n', svr.best_params_
x_test = np.linspace(x.min(), x.max(), 100).reshape(-1, 1)
y_predict = svr.predict(x_test)
sp = svr.best_estimator_.support_
plt.figure(facecolor='w')
plt.scatter(x[sp], y[sp], c='b', marker='o', label='Support Vectors')
plt.plot(x_test, y_predict, 'r--',label='RBF Kernel')
plt.plot(x, y, 'g-')
plt.legend(loc='best')
plt.title('SVR with grid_search C & gamma')
plt.xlabel('X')
plt.ylabel('Y')
plt.grid(True)
plt.tight_layout()
plt.show()
运行代码可以网格搜索到最优的Chegamma并得到SVM的结果可视化如下:
总结一下:
1.SVM中有两个超参数需要调参,一个是C,一个是
,在不知道这两者怎么搭配最终的分类效果好,使用高斯函数(RBF)是最好的,可以用grid_search来找最优的一组值超参数,而不是随便
调参
2. 某一种模型调参的能力是有限的,不会对分类结果有质的飞跃,当怎么调都调不好的话,就应该考虑换一种模型了
3. 调参不是主要的,特征选择和数据的清洗对模型的结果影响更重要
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04