京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中使用ElementTree解析XML示例
这篇文章主要介绍了Python中使用ElementTree解析XML示例,本文同时讲解了XML基本概念介绍、XML几种解析方法和ElementTree解析实例,需要的朋友可以参考下

【XML基本概念介绍】
XML 指可扩展标记语言(eXtensible Markup Language)。
XML 被设计用来传输和存储数据。
概念一:
概念二:
概念三:
概念四:
概念五:
概念六:
【XML几种解析方法】
常见的XML编程接口有DOM和SAX,这两种接口处理XML文件的方式不同,使用场合自然也就不同。
Python有三种方法解析XML: SAX,DOM,以及ElementTree:
1.SAX (Simple API for XML )
Pyhton标准库包含SAX解析器,SAX用事件驱动模型,通过在解析XML的过程中触发一个个的事件并调用用户定义的回调函数来处理XML文件。SAX是一种基于事件驱动的API。利用SAX解析XML文档牵涉到两个部分:解析器和事件处理器。
解析器负责读取XML文档,并向事件处理器发送事件,如元素开始及结束事件;而事件处理器则负责对事件作出处理。
优点:SAX流式读取XML文件,比较快,占用内存少。
缺点:需要用户实现回调函数(handler)。
2.DOM(Document Object Model)
将XML数据在内存中解析成一个树,通过对树的操作来操作XML。一个DOM的解析器在解析一个XML文档时,一次性读取整个文档,把文档中所有元素保存在内存中的一个树结构里,之后你可以利用DOM提供的不同的函数来读取或修改文档的内容和结构,也可以把修改过的内容写入xml文件。
优点:使用DOM的好处是你不需要对状态进行追踪,因为每一个节点都知道谁是它的父节点,谁是子节点.
缺点:DOM需要将XML数据映射到内存中的树,一是比较慢,二是比较耗内存,使用起来也比较麻烦!
3.ElementTree(元素树)
ElementTree就像一个轻量级的DOM,具有方便友好的API。代码可用性好,速度快,消耗内存少。
相比而言,第三种方法,即方便,又快速,我们一直用它!下面介绍用元素树如何解析XML:
【ElementTree解析】
两种实现
ElementTree生来就是为了处理XML ,它在Python标准库中有两种实现。
一种是纯Python实现,例如: xml.etree.ElementTree
另外一种是速度快一点的: xml.etree.cElementTree
尽量使用C语言实现的那种,因为它速度更快,而且消耗的内存更少! 在程序中可以这样写:
常用方法
示例XML
###########
## 加载XML
###########
方法一:加载文件
方法二:加载字符串
###########
##获取节点
###########
方法一:获得指定节点->getiterator()方法
方法二:获得指定节点->findall()方法
方法三:获得指定节点->find()方法
方法四:获得儿子节点->getchildren()
###########
## 例子01
###########
输出结果:
==============================
head=> bookone
name=> python check
number=> 001
page=> 200
==============================
head=> booktwo
name=> python learn
number=> 002
page=> 300
==============================
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28