京公网安备 11010802034615号
经营许可证编号:京B2-20210330
面对数据科学人才的巨大缺口,我们该如何提升自身技能
如今,数据科学家炙手可热。在世界各地,成千上万的学生都在大学或在线课程中选择了数据分析课程。
尽管如此,但数据科学人才数量与市场需求间仍存在很大的缺口。那么对于求职人群来说,该如何提升技能从而获得心仪的工作呢?
市场需求仍然很高
虽然数据科学领域的发展存在一些错误的信息,有报道称该领域的人才数量“ 自2012年以来增长了超过650%”。
但根据LinkedIn 针对美国增长最快的工作发布的2017年新兴工作报告,当中显示“科技领域是当之无愧的王者”,同时机器学习工程师,数据科学家,大数据工程师等职业在各行各业都备受追捧。
该报告还分析了LinkedIn上近五年发布的职位数据,从中发现如今发布的数据科学家职位数量是2012年的6.5倍。而且在新兴职位中最常见的十大技能中,有三个与数据科学直接相关,即Python,软件开发和数据分析。
但有经验的人才并不多
三年前,SAS执行副总裁兼CMO Jim Davis说:“如果你想迅速找到一份工作,那就想办法成为一名数据科学家”。
但问题是,该领域发展得太快了。如今有太多的数据科学家,但他们该领域的经验都不足,而且该行业的专家很少。这意味着,虽然数据科学领域仍然存在机会,但是想要充分利用这一人才缺口,则需要想方设法开拓个人的职业道路并取得领先。
竞争压力大
如今时代变了。当数据科学这个术语还相对仍较新时,公司会聘请那些只有基本数据知识的求职者,并会让他们在工作中学习。但现在,公司只会聘请那些对对编程和统计学有较深入的了解的人才。
市场需求仍然很大,但行业标准更高了。
Umbel高级工程总监Kevin Safford说:“每年,大量来自统计学、计量经济学、自然科学和计算机科学等领域的博士生对学术界没有太大的兴趣,从而选择进入职场。”
这意味着如今求职者必须面对竞争异常激烈的市场。一份在五年前看起来很有吸引力的简历在今天可能不会被通过。
行业现状
新闻博客网站赫芬顿邮报称,目前世界上大约有150万至300万名数据科学家,当中真的没有具有合适经验的求职者吗?
如果我告诉你,造成这种人才缺口负责招聘的人员并不是真正的数据科学家,而是公司的董事,人力资源部门人员呢?
为什么会这样?
事实是,数据科学已经成为一种流行语。5年来,它一直被《哈佛商业评论》认为是“市场上最性感的工作”。现在,公司急于在他们的队伍中加入数据专家。
但真正的问题是,许多公司并不知道数据科学家到底是什么,他们要做什么,如何构建团队,如何发挥数据科学家的真正价值,在对数据科学的认知上存在着巨大的缺口。
市场上存在大量的数据科学家,有成千上万的出色人才,他们能够轻松地提升企业的业务水平,但却很少有机会证明自己。
大多数公司都急于聘请数据方面的专家,他们认为需要一个有5到8年经验的人来解决他们所有的问题,但讽刺的是,这个领域存在的时间可能都没这么长。然后他们得出结论,认为市场上数据科学家的经验都不足,还不够优秀。
机遇
但一味地把责任都归因于对数据科学专业的无知,这是不公平的。数据科学家本身也有责任。
人力资源部门可能还以传统的方式进行招聘,因此面对这些新兴职位,在招聘时遇到问题也不足为奇。
数据是商业的未来,这是不可避免的。因此,数据科学家需要展示自身的优势和能力,以及能够带来的价值。
那么,数据科学家应该怎么提升自身技能呢?
如何提升技能
所有公司都希望他们的数据科学家能够解决实际问题,更理想的是,能够表达出他们的发现。因此,如果我们能用数据回答实际业务问题,那么我们将更有机会获得理想的工作。
但为此,我们需要经验和知识。成为一名炙手可热的数据科学家没有捷径可走。
我们可以通过以下六种方式提升自身的技能:
1. 了解数据科学领域
每个领域都需要数据科学家。
销售公司想知道,他们该如何定制营销活动,从而定位合适的客户群;金融公司想通过历史数据来帮助他们降低风险;游戏公司想知道,采取哪些措施能增加忠实玩家的数量;政府机构想知道,该如何把智能技术应用到城市建设。
你越了解某个领域,就越有可能成功管理该领域的数据。如果你不了解金融业的运作方式,那么在银行担任数据科学家就毫无意义。
2. 学习相关课程
数据科学每天都在飞速发展,这意味着你也必须不断进步。在今天很关键的内容,也许在明天就无足轻重了。因此,要想在数据科学领域保持竞争力,即必须不断学习,提升自身技能。
无论是在线还是线下课程,有良好声誉的数据科学课程都是获得基础数据科学知识的最佳途径。
3. 找导师
在职业道路中,当遇到问题需要寻求建议时,求助导师是不错的方法。许多资深的数据科学家很乐意培养有前途的职场新人,他们愿意向他人提供建议和想法。
4. 关注行业动态
如果你没有听说过数据=速度,那么你就落后了。
数据发展迅速,数百人正在开展数千个项目。也许那个你一直在努力解决某个问题已经被其他人解决了。
作为以成员间合作为前提的领域,数据科学不断从他人工作中收益,并让每个人都能发挥自己最大的价值。
因此,时刻关注行业动态和前沿信息是至关重要的。
5. 选择合适的公司
数据科学吸引了媒体的大量关注,因为通过数据科学公司能够收集大量的数据,但同时这也是一把双刃剑,大多数公司仍然不知道他们需要什么样的人才。
为了避免进入对自身认识不够的公司,需要注意的是:如果企业在求职信息中列出一长串需要求职者掌握的技能和软件,这只体现出该企业对自身的数据策略很不了解,他们认为招聘任何一位数据科学家就能解决他们所有的数据问题。
6. 结识新朋友
如果你真的想成为一名数据科学家,要记住数据科学最终是一个社会领域。通过社交网络认识其他的数据科学家是很重要的,Twitter、LinkedIn或Reddit都是不错的选择。
结语
充分利用数据才能够让企业处于不败之地。如今我们在日常生活中会用到大量的技术,比如智能设备,社交网络,互联网搜索等都会源源不断地产生更多数据。人们需要管理越来越多的数据,因此数据科学领域仍有很大的市场需求,而且该领域相对安全,不容易受到自动化的影响。
的确,数据科学领域的竞争更加激烈,但是只要付出努力,不断提升自己,你仍然很有可能成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16