京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据在运营中的作用
(一)先有好的逻辑和推理分析能力
我们来讲讲另一件可能会贯穿你的运营生涯始终的事情——数据在运营工作中的运用。或者,也可以说是如何用数据来指导你的运营工作。
这里要先提一嘴,数据的背后,其实是逻辑和推理。换句话讲,想要让数据可以更好地为你服务,你需要先有好的逻辑和推理分析能力。假如连这一层都做不到,即便你看过了这篇文章并拍案叫绝,很可能也是只得其形,未得其神。
而至于如何评估自己的逻辑能力,我给一个大体的参照——
逻辑能力较强的人语言表达方面往往是有组织的。说话表达往往有框架有条理,思路清晰。比如,在回答问题时 ta 会喜欢用 “起因-经过-结果”、“案例-问题-分析原因-解决方法” 等框架来进行回答。框架不是为了束缚思维,而是用来整理思路。
在此基础上,一般谈话话题容易跑题万里拉不回来的人,以及经常容易表达上前后自相矛盾难以自圆其说的人逻辑可能都是比较差的。
但,逻辑这个事,也不是不可以练习,只是一定需要投入大量时间。
比如,尝试给自己建立某种思考框架(如我们前面说过的 “案例-问题-原因-解决方案” 这样的框架),并尝试在自己所有可能会经历的相关场景中都持续强制自己使用相应框架进行思考和表达,这样持续几个月后,通常是会有些效果的。
此外,也推荐可以参考一下《思考的技术》、《麦肯锡教我的思考方法》、《创新者的思考》、《学会提问-批判性思维》等书,都是我看过关于逻辑和思考方法方面的一些好书。
另外,很多人尤其是文科生在提及数据时往往会觉得比较怵,但数据其实一点也不可怕,只要思路捋清楚了,你会发现数据其实还挺有趣的。在今天的内容里,我就会试着给你呈现一些有趣的例子。
(二)数据对于运营的价值
好了,接下来我们正经聊数据在运营中的作用。
说到数据,阿里的数据系统在整个国内互联网行业应该是最强大的了,很可能可能没有之一。
此前有一位从阿里离职的芮曦同学写过一篇 “我在阿里3年的运营经验都在这里了”。其中对于数据的价值和运营工作中的具体使用场景,我觉得很多地方讲得是比较到位的。
如果我们需要总结一下的话,简而言之,数据对于运营的价值可能包括了如下几方面——
1.数据可以客观反应出一款产品当前的状态好坏和所处阶段。
比如,我们定位的用户群主要是互联网行业的产品经理 + 产品运营,这群人假如有 300 万人,目前我们已经有了 10W 用户,且依靠口碑形成的自增长还比较迅速,那么我们是不是应该去加大一些推广和营销的力度,把推广做得更好一些了?
又或者,假如我们现在才只有 1W 用户,且课程等产品体验还比较一般,那其实我们当前的主要核心任务是不是更应该是先节奏慢点儿,踏实把产品体验搞好了再说?
2.假如做完了一件事但效果不好,数据可以告诉你,你的问题出在哪里。
比如,我们新做了一个围绕着课程推广的活动,但结束了之后发现真正愿意去参加课程的人不是太多,那你是不是该去看看,到底是引流引得不够多,还是课程页面转化率太低,还是整个报名流程有问题?
3.假如你想要实现某个目标,数据可以帮助你找到达成的最佳路径。
这个跟我们上一篇连载提到的东西类似,好比你老板让你要把销售额提升 5 倍,你是不是得去看看,销售额的提升到底该从哪里来更合适?是搞进来更多流量?还是用心把付费转化率做上去?还是好好提一下客单价?或者老板要的是用户量提升 50 万,你是不是得去看看,这 50 万用户从哪里来更靠谱?多少可以来自于用户口碑和自增长?多少可以来自于网盟?多少可以来自于豆瓣小组新浪微博?
4.极度精细的数据分析可以帮助你通过层层拆分,对于用户更了解,也对整个站内的生态更有掌控力。
比如,某机构这么多课程,我们是完全可以通过数据得到以下问题的答案的——从课程的层面来看看,到底什么样的课程更受大家喜欢?然后,大家听课的习惯是怎样的?是喜欢同一堂课认真听很多遍?还是一堂课只听了 3-5 分钟就走掉了?再然后,一个还没毕业的大学毕业生和一个已经工作了 2-3年 的互联网从业者,虽然同样都是想要学习,但学习习惯和诉求是不是应该是有所不同的?以及,假如我们想要尽其所能的服务好某机构的全部用户,我们是不是可以把这些用户划分为各种不同的类别,然后分别推送给他们不同的课程和学习内容,引导他们去完成各种不同的用户行为?
5.数据当中可能隐藏着一些潜在的能让你把一件事情变得更好的线索和彩蛋,有待于你去发现和挖掘。
好比,在某机构的用户群中,我们要是通过数据的分析发现了这样一个结论——在过去 1 个月内,但凡是跑到某机构来报名上课的用户,70%都是因为看了我们的某篇文章才跑过来的,这时候你觉得你应该做点啥?
毫无疑问,当然是把这篇文章放到首页显眼处,或者放到新用户注册或访问过程中的某个必经节点上,用它去刺激更多的新用户啊!
上述 5 点中,关于 1 的部分,也即如何从宏观上结合产品形态和产品发展趋势判断一款产品所处的阶段,并制定相应的运营策略
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16