
数据在运营中的作用
(一)先有好的逻辑和推理分析能力
我们来讲讲另一件可能会贯穿你的运营生涯始终的事情——数据在运营工作中的运用。或者,也可以说是如何用数据来指导你的运营工作。
这里要先提一嘴,数据的背后,其实是逻辑和推理。换句话讲,想要让数据可以更好地为你服务,你需要先有好的逻辑和推理分析能力。假如连这一层都做不到,即便你看过了这篇文章并拍案叫绝,很可能也是只得其形,未得其神。
而至于如何评估自己的逻辑能力,我给一个大体的参照——
逻辑能力较强的人语言表达方面往往是有组织的。说话表达往往有框架有条理,思路清晰。比如,在回答问题时 ta 会喜欢用 “起因-经过-结果”、“案例-问题-分析原因-解决方法” 等框架来进行回答。框架不是为了束缚思维,而是用来整理思路。
在此基础上,一般谈话话题容易跑题万里拉不回来的人,以及经常容易表达上前后自相矛盾难以自圆其说的人逻辑可能都是比较差的。
但,逻辑这个事,也不是不可以练习,只是一定需要投入大量时间。
比如,尝试给自己建立某种思考框架(如我们前面说过的 “案例-问题-原因-解决方案” 这样的框架),并尝试在自己所有可能会经历的相关场景中都持续强制自己使用相应框架进行思考和表达,这样持续几个月后,通常是会有些效果的。
此外,也推荐可以参考一下《思考的技术》、《麦肯锡教我的思考方法》、《创新者的思考》、《学会提问-批判性思维》等书,都是我看过关于逻辑和思考方法方面的一些好书。
另外,很多人尤其是文科生在提及数据时往往会觉得比较怵,但数据其实一点也不可怕,只要思路捋清楚了,你会发现数据其实还挺有趣的。在今天的内容里,我就会试着给你呈现一些有趣的例子。
(二)数据对于运营的价值
好了,接下来我们正经聊数据在运营中的作用。
说到数据,阿里的数据系统在整个国内互联网行业应该是最强大的了,很可能可能没有之一。
此前有一位从阿里离职的芮曦同学写过一篇 “我在阿里3年的运营经验都在这里了”。其中对于数据的价值和运营工作中的具体使用场景,我觉得很多地方讲得是比较到位的。
如果我们需要总结一下的话,简而言之,数据对于运营的价值可能包括了如下几方面——
1.数据可以客观反应出一款产品当前的状态好坏和所处阶段。
比如,我们定位的用户群主要是互联网行业的产品经理 + 产品运营,这群人假如有 300 万人,目前我们已经有了 10W 用户,且依靠口碑形成的自增长还比较迅速,那么我们是不是应该去加大一些推广和营销的力度,把推广做得更好一些了?
又或者,假如我们现在才只有 1W 用户,且课程等产品体验还比较一般,那其实我们当前的主要核心任务是不是更应该是先节奏慢点儿,踏实把产品体验搞好了再说?
2.假如做完了一件事但效果不好,数据可以告诉你,你的问题出在哪里。
比如,我们新做了一个围绕着课程推广的活动,但结束了之后发现真正愿意去参加课程的人不是太多,那你是不是该去看看,到底是引流引得不够多,还是课程页面转化率太低,还是整个报名流程有问题?
3.假如你想要实现某个目标,数据可以帮助你找到达成的最佳路径。
这个跟我们上一篇连载提到的东西类似,好比你老板让你要把销售额提升 5 倍,你是不是得去看看,销售额的提升到底该从哪里来更合适?是搞进来更多流量?还是用心把付费转化率做上去?还是好好提一下客单价?或者老板要的是用户量提升 50 万,你是不是得去看看,这 50 万用户从哪里来更靠谱?多少可以来自于用户口碑和自增长?多少可以来自于网盟?多少可以来自于豆瓣小组新浪微博?
4.极度精细的数据分析可以帮助你通过层层拆分,对于用户更了解,也对整个站内的生态更有掌控力。
比如,某机构这么多课程,我们是完全可以通过数据得到以下问题的答案的——从课程的层面来看看,到底什么样的课程更受大家喜欢?然后,大家听课的习惯是怎样的?是喜欢同一堂课认真听很多遍?还是一堂课只听了 3-5 分钟就走掉了?再然后,一个还没毕业的大学毕业生和一个已经工作了 2-3年 的互联网从业者,虽然同样都是想要学习,但学习习惯和诉求是不是应该是有所不同的?以及,假如我们想要尽其所能的服务好某机构的全部用户,我们是不是可以把这些用户划分为各种不同的类别,然后分别推送给他们不同的课程和学习内容,引导他们去完成各种不同的用户行为?
5.数据当中可能隐藏着一些潜在的能让你把一件事情变得更好的线索和彩蛋,有待于你去发现和挖掘。
好比,在某机构的用户群中,我们要是通过数据的分析发现了这样一个结论——在过去 1 个月内,但凡是跑到某机构来报名上课的用户,70%都是因为看了我们的某篇文章才跑过来的,这时候你觉得你应该做点啥?
毫无疑问,当然是把这篇文章放到首页显眼处,或者放到新用户注册或访问过程中的某个必经节点上,用它去刺激更多的新用户啊!
上述 5 点中,关于 1 的部分,也即如何从宏观上结合产品形态和产品发展趋势判断一款产品所处的阶段,并制定相应的运营策略
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01