京公网安备 11010802034615号
经营许可证编号:京B2-20210330
应用大数据创业:下一波改革是大规模定制
《大数据时代》作者、数据科学家维克多·迈尔·舍恩伯格近日在出席“福布斯-静安南京路论坛”,针对大数据于传统行业的颠覆,提出了新的见解。
1、下一波的改革是大规模定制,为大量客户定制产品和服务,成本低、又兼具个性化。大数据可以发挥关键作用,告诉商家每一个用户的消费倾向,以及需求之间的细分差异。这些数据量的增加,能够实现从量变到质变的转化过程。
舍恩伯格列举了创业公司Decide.com的例子,该公司能帮人们做购买决策,如告诉用户在什么时间段买什么产品最便宜,预测产品的价格走势等,都是利用大数据完成的。不仅帮助上万的用户升迁,为他们的采购找到最适合的时间,也提高了生产效率、降低了交易成本。
他认为,这类公司会让线下零售商的利润进一步受挫,但从商业的本质而言,这是一个依靠大数据催生的全新产业。该公司在数周前被eBay收购。舍恩伯格同时也认为,伴随大数据带来的隐私问题,也急需面临信任危机的挑战,企业应该谨慎处理这些有价值的隐私数据。
2、大数据的思维方式正在形成,即如此多的数据,该作什么用途。这种思维方式将成为未来重要的资产。
舍恩伯格认为,大数据思维方式可以提高公共服务机构的效率。比如,从前防火检察院只有13%的时间去准备预测方案,但现在他们找到火灾隐患的概率比从前提高了6倍。舍恩伯格表示,他的下一本书,将阐述大数据对服务业的影响,不仅仅是效率,更多的是创新想法、产品与服务。
维克多·迈尔·舍恩伯格在《大数据时代》一书中,曾明确指出,大数据时代最大的转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。这就颠覆了千百年来人类的思维惯例,对人类的认知和与世界交流的方式提出了全新的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27