
剖析手写数字识别器LeNet-5认识卷积网络
关于卷积神经网络(CNN)的文章网上非常多,也有很多大牛们讲得生动形象,令人十分佩服,也给我的学习带来了很大的帮助,但是关于LeNet-5的具体剖析感觉还没有一篇博文讲得很清楚,本着菜鸟服务菜鸟的精神,写一个通过详细介绍LeNet-5手写识别器的过程来认识卷积网络。
CNN的核心思想无非三种:
1、局部感受野:每个神经元感受局部图像区域;
2、权值共享:同一个滤波器下,每个神经元权值参数是一样的;
3、时间或空间亚采样:模糊图像,带来更好的泛化性能。
其实理解CNN的方法有很多种,比如一个Map是28*28,让它去卷积上一层的Map,怎么看呢?可以看作是28*28个神经元走一次(因为“局部感受野”和“权值共享”嘛)。所以,可以把一个Map叫做一个滤波器,也可以把一个神经元叫做滤波器。
下面介绍这次博文的主题,典型的用来识别数字的卷积网络LeNet-5。当年美国大多数银行就是用它来识别支票上面的手写数字的。能够达到这种商用的地步,它的准确性可想而知。上图。
由图知输入的图像是32*32格式的。
第一步,C1层,也就是卷积层的第一层。一共有6个Map,每个Map分辨率是28*28,每个神经元的分辨率则是(32-28+1)*(32-28+1)=5*5,我们可以把这个神经元看作一个滤波器,而这就是局部感受野,因为一个滤波器只感受5*5的风景。又因为权值共享,同Map下所有的神经元感受的特征都是一样的,所以这整个Map都只能算一个滤波器。每个Map算一个滤波器,每个滤波器有(5*5+1)个参数,28*28个神经元是重复被6个滤波器使用的,每个神经元一共有(5*5+1)*6=156个参数,这里要注意一点,这里是6个滤波器卷一个Map,所以有6个偏置。假如6个滤波器卷两个Map呢?还是只有6个偏置,因为被卷的Map不论数量只算一个偏置。一共有156*(28*28)=122304个连接。
第二步,S2层,下采样层,模糊图像,提高泛化性。6个Map,每个Map14*14,size=2*2,卷积层有重叠,而采样层无重叠,所以每个Map=上一层Map分辨率28*28/size 2*2=14*14。采样层参数计算方法和卷积层也不一样,每个滤波器有可训练参数和可训练偏置两个参数,所以一共有2*6=12个参数。而采样层又是特殊的卷积层,只不过是卷积核为2*2(pool size),所以连接数计算方法不变,一共有(2*2+1)*14*14*6=5880个连接。
第三部,C3层,卷积层。16个Map,每个Map有10*10个神经元,每个神经元分辨率为(14-10+1)*(14-10+1)=5*5,前6个Map卷S2中3个相邻Map,接下来6个Map卷S2中4个相邻Map,接下来3个卷S2中4个不相邻Map,最后一个卷S2中所有Map。一共有6*(3*5*5+1)+6*(4*5*5+1)+3*(4*5*5+1)+1*(6*5*5+1)=1516个参数,一共有1516*10*10=151600个连接。
第四层,S4层,下采样层,16个Map,每个Map有5*5个神经元,pool size=2*2。有32个参数,有(2*2+1)*5*5*16=2000个连接。
第五层,C5层,卷积层。有120个Map,每个神经元与S4的16个Map的5*5相连,所以C5的Map为(5-5+1)*(5-5+1)=1*1个神经元。一共有120*(16*5*5+1)=48120个参数,有1*1*48120个连接。
第六层,F6层,全连接层,84个Map,一共有84*121=10164个参数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14