京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2018 IEEE顶级编程语言交互排行榜发布:Python屠榜
今天,IEEE Spectrum 发布了第五届顶级编程语言交互排行榜:Python 卫冕成功,C++ 异军突起,雄踞第二,C 语言和 Java 则「退位让贤」,分据第三和第四。
榜单地址:https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
IEEE 的榜单结合 9 个数据来源的 11 个衡量指标(去年的排行榜有 12 个指标,今年少了 Dice job 网站信息,因其关闭了 API),权衡并发布了 47 种语言的排行榜,少于去年的 48 种。该排行榜允许读者根据自己的喜好或需求设定权重,如语言趋势或员工最关注的语言等。读者可以查看 Trending、Jobs、Open 等不同维度的编程语言排行数据。
读者可以根据自己的喜好或需求设定权重。
2018 年 IEEE 顶级编程语言交互排行榜和 2017 年排行榜前十名对比图。
Python 的排名从 2016 年开始就持续上升,去年顺利登顶,仅以 0.3 分的优势超越第二名 C 语言险夺第一。而今年,Python 依然高居榜首,且与第二名拉开差距。但是,今年的第二却不再是 C 语言,而是 C++ 了。C++ 的异军突起,使得 C 语言和 Java 都不得不「退位让贤」,分别降至第三和第四(去年它们分别位至第二和第三)。
为什么 Python 会继续获得程序员的青睐呢?顶级编程语言中的另外两个变化可能会给出点提示。
首先,Python 现在被视为嵌入式语言。以前,编写嵌入式应用程序严重倾向于编译语言,以避免在处理能力和内存有限的机器上高速评估代码的溢出。摩尔定律虽已渐式微,但还未完全消退。很多现代微控制器已有足够的能力承载 Python 解释器。以这种方式使用 Python 的一个好处是,它在某些应用程序中,通过交互提示或动态重新加载脚本来操作附加硬件非常方便。涉足到一个新的领域,只会增长 Python 的人气。
Python 越来越受欢迎的另一个原因是 R 语言的热度下降。R 在 2016 年达到顶峰,排名第五,去年跌至第六,今年排名第七。R 是一种专门处理统计和大数据的语言。随着人们不断把对大型数据集的兴趣转向其在机器学习上的应用,且由于数据统计和机器学习中高质量 Python 库的出现,相比更专业的 R 语言,灵活的 Python 语言变得更有吸引力。
IEEE Spectrum 聚焦未来发展趋势,旨在衡量各项指标以找出发展迅速的语言,可以看到谷歌的 Go 已经从第 7 位上升到第 5 位。但名次上升最快的还是 Scala,从第 15 位上升到第 8 位。Scala 是为了改进 Java 而创建的,所以 Java 名次下降的部分原因可能是 Scala 的上升。
令人惊讶的是,Action 的排名提升非常有限。去年它以 0.0 的排名垫底,几乎要被淘汰,但今年它以 1.6 分回到了倒数第二。Forth 是嵌入式世界的一匹老马,但是却拿了零蛋。这是作者个人最喜欢的语言之一,但如果明年它继续拿零分,就要被踢出排行榜了。
那么这一年中发展最快的编程语言又是哪些呢?和去年一样,Python 占据榜首,C++ 跃居第二,Java 和 C 排名位置各掉一名。
接下来,我们来看工作环境中编程语言的使用情况。Python 从去年的第三名跃居第一,Java 从第一名掉落至第三名,C 语言保持不变,而 C++ 依然势头强劲,评分增幅达 1.4。
而开源项目钟爱的编程语言排名如下:
前四名稳定不变,而去年的第五名 Swift 掉落至 22 名!
最后来看根据设计自由度衡量出的编程语言排名:
Python 仍然是第一名,Java 从去年的第二名跌至第四,Java 排名未变,但所占比例由 17 年的 88.9 下跌至今年的 82.3。PHP 与 Java 持平,较去年略有上升。
综合来看,Python 在各个榜单上均稳居第一,而 C++ 也不容小觑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31