
2018 IEEE顶级编程语言交互排行榜发布:Python屠榜
今天,IEEE Spectrum 发布了第五届顶级编程语言交互排行榜:Python 卫冕成功,C++ 异军突起,雄踞第二,C 语言和 Java 则「退位让贤」,分据第三和第四。
榜单地址:https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
IEEE 的榜单结合 9 个数据来源的 11 个衡量指标(去年的排行榜有 12 个指标,今年少了 Dice job 网站信息,因其关闭了 API),权衡并发布了 47 种语言的排行榜,少于去年的 48 种。该排行榜允许读者根据自己的喜好或需求设定权重,如语言趋势或员工最关注的语言等。读者可以查看 Trending、Jobs、Open 等不同维度的编程语言排行数据。
读者可以根据自己的喜好或需求设定权重。
2018 年 IEEE 顶级编程语言交互排行榜和 2017 年排行榜前十名对比图。
Python 的排名从 2016 年开始就持续上升,去年顺利登顶,仅以 0.3 分的优势超越第二名 C 语言险夺第一。而今年,Python 依然高居榜首,且与第二名拉开差距。但是,今年的第二却不再是 C 语言,而是 C++ 了。C++ 的异军突起,使得 C 语言和 Java 都不得不「退位让贤」,分别降至第三和第四(去年它们分别位至第二和第三)。
为什么 Python 会继续获得程序员的青睐呢?顶级编程语言中的另外两个变化可能会给出点提示。
首先,Python 现在被视为嵌入式语言。以前,编写嵌入式应用程序严重倾向于编译语言,以避免在处理能力和内存有限的机器上高速评估代码的溢出。摩尔定律虽已渐式微,但还未完全消退。很多现代微控制器已有足够的能力承载 Python 解释器。以这种方式使用 Python 的一个好处是,它在某些应用程序中,通过交互提示或动态重新加载脚本来操作附加硬件非常方便。涉足到一个新的领域,只会增长 Python 的人气。
Python 越来越受欢迎的另一个原因是 R 语言的热度下降。R 在 2016 年达到顶峰,排名第五,去年跌至第六,今年排名第七。R 是一种专门处理统计和大数据的语言。随着人们不断把对大型数据集的兴趣转向其在机器学习上的应用,且由于数据统计和机器学习中高质量 Python 库的出现,相比更专业的 R 语言,灵活的 Python 语言变得更有吸引力。
IEEE Spectrum 聚焦未来发展趋势,旨在衡量各项指标以找出发展迅速的语言,可以看到谷歌的 Go 已经从第 7 位上升到第 5 位。但名次上升最快的还是 Scala,从第 15 位上升到第 8 位。Scala 是为了改进 Java 而创建的,所以 Java 名次下降的部分原因可能是 Scala 的上升。
令人惊讶的是,Action 的排名提升非常有限。去年它以 0.0 的排名垫底,几乎要被淘汰,但今年它以 1.6 分回到了倒数第二。Forth 是嵌入式世界的一匹老马,但是却拿了零蛋。这是作者个人最喜欢的语言之一,但如果明年它继续拿零分,就要被踢出排行榜了。
那么这一年中发展最快的编程语言又是哪些呢?和去年一样,Python 占据榜首,C++ 跃居第二,Java 和 C 排名位置各掉一名。
接下来,我们来看工作环境中编程语言的使用情况。Python 从去年的第三名跃居第一,Java 从第一名掉落至第三名,C 语言保持不变,而 C++ 依然势头强劲,评分增幅达 1.4。
而开源项目钟爱的编程语言排名如下:
前四名稳定不变,而去年的第五名 Swift 掉落至 22 名!
最后来看根据设计自由度衡量出的编程语言排名:
Python 仍然是第一名,Java 从去年的第二名跌至第四,Java 排名未变,但所占比例由 17 年的 88.9 下跌至今年的 82.3。PHP 与 Java 持平,较去年略有上升。
综合来看,Python 在各个榜单上均稳居第一,而 C++ 也不容小觑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12