
MATLAB vs. Python | 选择 MATLAB 用犹豫吗
基于矩阵的 MATLAB 语言让数学直观易读。
工程师和科学家需要能够直观表达矩阵和数组数学运算的编程语言,而非通过通用编程实现的编程语言。
Python 中的矩阵数学需要执行函数调用,而非自然算子。您必须对标量、1-D 矩阵和 2-D 矩阵之间的差异进行跟踪。即使在最简单的 Python 代码中做到这一点也很困难,下图中Python 代码里的错误你能找到吗?
在 Python 代码的第 2 行有一个非常微小的错误。在原始代码中,行是 1-d 矩阵。它看起来像行向量,但却没有足够的维数来说明是行还是列——只能表明是 1-d 矩阵。由于没有第二个维度,第三行中的转置没有效果。而 MATLAB 不会对标量、1-d 矩阵、2-d 矩阵和多维数组进行人为区分。
使用 MATLAB 语言编写相同的示例,你会发现 MATLAB 在表达计算数学方面更加自然。由此可见,MATLAB 中的线性代数与教科书中的线性代数更接近,在数据分析、信号和图像处理、控制设计以及其他应用中也是一样。这也是超过 1,800 本教科书中使用 MATLAB 的原因。
◆◆ ◆ ◆
MATLAB 适合工程师和科学家的工作方式。
Python 的函数通常由高级编程人员为其他编程人员设计开发,并撰写文档。Python 为科学计算提供的开发环境缺乏桌面版 MATLAB 所具备的可靠性和集成能力。
MATLAB 则是为工程师和科学家量身定制的:
“使用 MATLAB,我能够以远超其他语言的速度编写新功能的代码并调试代码错误,将开发时间缩短一半,这对于满足较短的交付周期很有帮助。当客户看到结果后,他们会认为我每周工作 70 小时。”
——Bancroft Henderson,EMSolutions
◆◆ ◆ ◆
成熟的 MATLAB 工具箱为工程师和科学家所用。
无论是对经济数据建模、分析图像序列,还是操控机器人,都需要编程语言支持您使用的特定工具。这些工具不仅要正常工作,也需要完美配合。
Python 依靠社区创作的工具包为科研和工程应用提供功能,它们在质量和功能上千差万别。每个都有其独立的文档,工程师需要花费大量的时间整合一份解决方案。
与 Python 不同的是,MATLAB 工具箱为科学和工程应用提供经过专业开发、严格测试、市场验证和完备文档描述的功能。各个工具箱相互配合,也可以与并行计算环境、GPU 和自动 C 代码生成整合。它们同步更新,完全不必担心库版本不兼容的问题。
◆◆ ◆ ◆
相比自定义编程,MATLAB 应用程序完成任务更轻松。
Python 不会为科研和工程应用提供支持一体化工作流程的应用程序,而是需要自定义编程。这会延缓研发进度,尤其是对于那些高度迭代的工作流程来说。
MATLAB 应用程序可以让您立即开始工作。这些交互式应用程序提供对大量算法集的直接访问并可以实时提供可视化反馈。您可以尝试新的曲面拟合算法、滤波器设计技术或机器学习分类算法,并且实时获取数据的运算结果。您可以在获得所需结果之前反复迭代,然后自动生成 MATLAB 程序,以便对您的工作进行重制或自动处理。
使用分类学习器应用程序进行模型验证和评估。
◆◆ ◆ ◆
使用 MATLAB 轻松实现从研发到生产的全流程自动化。
重大的工程和科学挑战需要团队间的广泛合作,集思广益使想法付诸实施。在这过程中的每次交付都会增加错误和延迟的风险。
与 Python不同,MATLAB 可在整个工作流程中为团队提供帮助:
◆◆ ◆ ◆
MATLAB 更快,这意味着更多想法的实现以及解决更棘手的问题。
毋庸置疑,MATLAB 在处理统计、工程计算和数据可视化的常见科学计算任务时比 Python 更快。图表中列出了基准测试结果。
Python 代码需要使用重叠和冲突的附加功能来获得性能优势,如即时编译和显式并行编程。这些解决方案往往不完整,或者仅适用于高级编程人员。
MATLAB 承担了加速代码运行速度的艰巨任务。数学运算分布在计算机的各个内核中、库调用得到了高度优化,所有代码实时编译。只需要添加3 个字符“par”到“for”,您就可以将 for 循环更改为并行 for 循环或将标准数组更改为 GPU 或分布式数组来以并行方式运行算法。无需更改代码,即可在可无限扩展的公共云或私有云上运行并行算法。
对比 MATLAB 和 Python 在统计、工程计算和数据可视化等领域的科学计算任务中的执行时间。每个点代表每种语言中单次测试运行的时间。
◆◆ ◆ ◆
MATLAB 提供可信赖的运算结果。
工程师和科学家信赖 MATLAB 帮他们将宇宙飞船送往冥王星、使接受器官移植的患者与器官捐献者匹配,或者只是为管理层编制一份报告。这份信任建立在无差错的数值计算上,来自于 MATLAB 在数值分析研究领域的强大根基和完美表现。
MathWorks 的工程师团队每天会对 MATLAB 代码库运行数百万次测试,持续不断验证代码的质量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27