
MATLAB vs. Python | 选择 MATLAB 用犹豫吗
基于矩阵的 MATLAB 语言让数学直观易读。
工程师和科学家需要能够直观表达矩阵和数组数学运算的编程语言,而非通过通用编程实现的编程语言。
Python 中的矩阵数学需要执行函数调用,而非自然算子。您必须对标量、1-D 矩阵和 2-D 矩阵之间的差异进行跟踪。即使在最简单的 Python 代码中做到这一点也很困难,下图中Python 代码里的错误你能找到吗?
在 Python 代码的第 2 行有一个非常微小的错误。在原始代码中,行是 1-d 矩阵。它看起来像行向量,但却没有足够的维数来说明是行还是列——只能表明是 1-d 矩阵。由于没有第二个维度,第三行中的转置没有效果。而 MATLAB 不会对标量、1-d 矩阵、2-d 矩阵和多维数组进行人为区分。
使用 MATLAB 语言编写相同的示例,你会发现 MATLAB 在表达计算数学方面更加自然。由此可见,MATLAB 中的线性代数与教科书中的线性代数更接近,在数据分析、信号和图像处理、控制设计以及其他应用中也是一样。这也是超过 1,800 本教科书中使用 MATLAB 的原因。
◆◆ ◆ ◆
MATLAB 适合工程师和科学家的工作方式。
Python 的函数通常由高级编程人员为其他编程人员设计开发,并撰写文档。Python 为科学计算提供的开发环境缺乏桌面版 MATLAB 所具备的可靠性和集成能力。
MATLAB 则是为工程师和科学家量身定制的:
“使用 MATLAB,我能够以远超其他语言的速度编写新功能的代码并调试代码错误,将开发时间缩短一半,这对于满足较短的交付周期很有帮助。当客户看到结果后,他们会认为我每周工作 70 小时。”
——Bancroft Henderson,EMSolutions
◆◆ ◆ ◆
成熟的 MATLAB 工具箱为工程师和科学家所用。
无论是对经济数据建模、分析图像序列,还是操控机器人,都需要编程语言支持您使用的特定工具。这些工具不仅要正常工作,也需要完美配合。
Python 依靠社区创作的工具包为科研和工程应用提供功能,它们在质量和功能上千差万别。每个都有其独立的文档,工程师需要花费大量的时间整合一份解决方案。
与 Python 不同的是,MATLAB 工具箱为科学和工程应用提供经过专业开发、严格测试、市场验证和完备文档描述的功能。各个工具箱相互配合,也可以与并行计算环境、GPU 和自动 C 代码生成整合。它们同步更新,完全不必担心库版本不兼容的问题。
◆◆ ◆ ◆
相比自定义编程,MATLAB 应用程序完成任务更轻松。
Python 不会为科研和工程应用提供支持一体化工作流程的应用程序,而是需要自定义编程。这会延缓研发进度,尤其是对于那些高度迭代的工作流程来说。
MATLAB 应用程序可以让您立即开始工作。这些交互式应用程序提供对大量算法集的直接访问并可以实时提供可视化反馈。您可以尝试新的曲面拟合算法、滤波器设计技术或机器学习分类算法,并且实时获取数据的运算结果。您可以在获得所需结果之前反复迭代,然后自动生成 MATLAB 程序,以便对您的工作进行重制或自动处理。
使用分类学习器应用程序进行模型验证和评估。
◆◆ ◆ ◆
使用 MATLAB 轻松实现从研发到生产的全流程自动化。
重大的工程和科学挑战需要团队间的广泛合作,集思广益使想法付诸实施。在这过程中的每次交付都会增加错误和延迟的风险。
与 Python不同,MATLAB 可在整个工作流程中为团队提供帮助:
◆◆ ◆ ◆
MATLAB 更快,这意味着更多想法的实现以及解决更棘手的问题。
毋庸置疑,MATLAB 在处理统计、工程计算和数据可视化的常见科学计算任务时比 Python 更快。图表中列出了基准测试结果。
Python 代码需要使用重叠和冲突的附加功能来获得性能优势,如即时编译和显式并行编程。这些解决方案往往不完整,或者仅适用于高级编程人员。
MATLAB 承担了加速代码运行速度的艰巨任务。数学运算分布在计算机的各个内核中、库调用得到了高度优化,所有代码实时编译。只需要添加3 个字符“par”到“for”,您就可以将 for 循环更改为并行 for 循环或将标准数组更改为 GPU 或分布式数组来以并行方式运行算法。无需更改代码,即可在可无限扩展的公共云或私有云上运行并行算法。
对比 MATLAB 和 Python 在统计、工程计算和数据可视化等领域的科学计算任务中的执行时间。每个点代表每种语言中单次测试运行的时间。
◆◆ ◆ ◆
MATLAB 提供可信赖的运算结果。
工程师和科学家信赖 MATLAB 帮他们将宇宙飞船送往冥王星、使接受器官移植的患者与器官捐献者匹配,或者只是为管理层编制一份报告。这份信任建立在无差错的数值计算上,来自于 MATLAB 在数值分析研究领域的强大根基和完美表现。
MathWorks 的工程师团队每天会对 MATLAB 代码库运行数百万次测试,持续不断验证代码的质量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17