京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言vs Python:硬碰硬的数据分析
我们将在已有的数十篇从主观角度对比Python和R的文章中加入自己的观点,但是这篇文章旨在更客观地看待这两门语言。我们会平行使用Python和R分析一个数据集,展示两种语言在实现相同结果时需要使用什么样的代码。这让我们了解每种语言的优缺点,而不是猜想。
我们将会分析一个NBA数据集,包含运动员和他们在2013-2014赛季的表现,可以在这里下载这个数据集。我们展示Python和R的代码,同时做出一些解释和讨论。事不宜迟,现在就开始这场硬碰硬的对决吧!
读取CSV文件
R
nba <- read.csv("nba_2013.csv")
Python
import pandas
nba = pandas.read_csv("nba_2013.csv")
上面的代码分别在两种语言中将包含2013-2014赛季NBA球员的数据的 nba_2013.csv
文件加载为变量nba。Python中实际的唯一不同是需要加载pandas库以使用Dataframe。Dataframe在R和Python中都可用,它是一个二维数组(矩阵),其中每列都可以是不同的数据类型。在完成这一步后,csv文件在两种语言中都加载为dataframe。
统计球员数量
R
print(dim(nba))
[1] 481 31
Python
print(nba.shape)
(481, 31)
两者分别输出球员数量和数据列数量。我们有481行,或者说球员,和31列关于球员的数据。
查看数据的第一行
R
print(head(nba, 1))
player pos age bref_team_id
1 Quincy Acy SF 23 TOT
[output truncated]
Python
print(nba.head(1))
player pos age bref_team_id
0 Quincy Acy SF 23 TOT
[output truncated]
它们几乎完全相同。两种语言都打印出数据的第一行,语法也非常类似。Python在这里更面向对象一些,head是dataframe对象的一个方法,而R具有一个单独的head函数。当开始使用这些语言做分析时,这是一个共同的主题,可以看到Python更加面向对象而R更函数化。
计算每个指标的均值
让我们为每个指标计算均值。如你所见,数据列以类似fg(field goals made)和ast(assists)的名称命名。它们都是球员的赛季统计指标。如果想得到指标的完整说明,参阅这里。
R
meanNoNA <- function(values){
mean(values, na.rm=TRUE)
}
sapply(nba, meanNoNA)
player NA
pos NAage 26.5093555093555
bref_team_id NA
[output truncated]
Python
import numpy
nba_numeric = nba._get_numeric_data()
nba_numeric.apply(numpy,.mean, axis=0)
age 26.509356
g 53.253638
gs 25.571726
[output truncated]
这里有一些明显的分歧。在两种方法中,我们均在dataframe的列上应用了一个函数。在python中,如果我们在非数值列(例如球员姓名)上应用函数,会返回一个错误。要避免这种情况,我们只有在取平均值之前选择数值列。
在R中,对字符串列求均值会得到NA——not
available(不可用)。然而,我们在取均值时需要确实忽略NA(因此需要构建我们自己的函数)。否则类似x3p.这样的一些列的均值将会为NA,这一列代表三分球的比例。有些球员没有投出三分球,他们的百分比就是缺失的。如果我们直接使用R中的mean函数,就会得到NA,除非我们指定na.rm=TRUE,在计算均值时忽略缺失值。
绘制成对散点图
一个探索数据的常用方法是查看列与列之间有多相关。我们将会比较ast,fg和trb。
R
library(GGally)
ggpairs(nba[, c("ast", "fg", "trb")])
import seaborn as snsimport matplotlib.pyplot as plt
sns.pairplot(nba[["ast", "fg", "trb"]])
plt.show()
我们会得到非常相似的两张图,但是可以看到R的数据科学生态中有许多较小的软件包(GGally是最常用的R绘图包ggplot2的辅助包)和更多的通用可视化软件包。在Python中,matplotlib是主要的绘图包,seaborn是一个广泛用于matplotlib上的图层。Python中的可视化通常只有一种蛀牙哦的方法完成某件事,而R中可能有许多包支持不同的方法(例如,至少有半打绘制成对散点图的包)。
对球员聚类
另一个很好探索数据的方式是生成类别图。这将会显示哪些球员更相似。
R
library(cluster) set.seed(1) isGoodCol <- function(col){ sum(is.na(col)) ==0&& is.numeric(col) } goodCols <- sapply(nba, isGoodCol) clusters <- kmeans(nba[,goodCols], centers=5) labels <- clusters$cluster
Python
from sklearn.cluster import KMeans kmeans_model = KMeans(n_clusters=5, random_state=1) good_columns = nba._get_numeric_data().dropna(axis=1) kmeans_model.fit(good_columns) labels = kmeans_model.labels_
为了正确的聚类,我们移除了所有非数值列,以及包含缺失值的列。在R中,我们在每一列上应用一个函数,如果该列包含任何缺失值或不是数值,则删除它。接下来我们使用cluster包实施k-means聚类,在数据中发现5个簇。通过set.seed设置随机种子以使结果可复现。
在Python中,我们使用了主要的Python机器学习包scikit-learn拟合k-means模型并得到类别标签。数据准备的过程和R非常类似,但是用到了get_numeric_data和dropna方法。
绘制类别图
我们现在可以按类别绘制球员分布图以发现模式。首先使用PCA将数据降至2维,然后画图,用不同标记或深浅的点标志类别。
nba2d <- prcomp(nba[,goodCols], center=TRUE) twoColumns <- nba2d$x[,1:2] clusplot(twoColumns, labels)
Python
from sklearn.decomposition import PCA pca_2 = PCA(2) plot_columns = pca_2.fit_transform(good_columns) plt.scatter(x=plot_columns[:,0], y=plot_columns[:,1], c=labels) plt.show()
在R中,我们通过聚类库中的函数clusplot函数绘图,使用内建函数pccomp实行PCA。
在Python中,我们使用scikit-learn库中的PCA类,使用matplotlib创建图形。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06