京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据平台融合需要一个虚拟化架构_数据分析师
为了实现大数据所勾画出的美好愿景,你需要在数据层和基础设施层等基础架构中对数据进行抽象化的工作。
首先,你应该规划一个全面的云数据虚拟化基础设施。虚拟化云分析法是新时代中的大数据典范。作为一种集成方法,它能够确保大数据的统一访问、建模、部署、优化和管理成为一种异构资源。
与任何虚拟化一样,数据查询、报告、预测分析,以及针对关系型、Hadoop、NoSQL等不同后端数据库应用的任何“SQL-虚拟化”解决方法相同,数据虚拟化的核心是抽象层。当然,数据虚拟化可能会转而依靠其他的基础设施虚拟化层,例如存储与服务器平台。在某些情况下,数据虚拟化可能会在地理上和多云环境中进行扩张。
在我们讨论的众多层中,虚拟化无疑是这些枯燥数据话题的一个缩影。但是如果你希望自己的大数据云平台能够解决以下业务需求,那么它们无疑是最基础的。这些具体的业务需求是:
是的,这是一项艰巨的任务。毫无疑问,数据虚拟化和虚拟的基础架构实践起来比说起来困难的多。此外,部署、管理和优化的工作也需要花费大量的资金。
基于云的大数据需要越来越复杂的虚拟化基础设施。对于大部分大数据专业人员而言,解决这一难题就如同天文学家试图绘制出宇宙中的暗物质一样困难。他们知道这项工作既重要,但又十分的乏味和烦琐。实际上,大数据专业人员更喜欢从事Hadoop和NoSQL的研究,因为它们正在新的技术领域中闪烁着最耀眼的光芒。
随着大数据应用范围的不断拓展,用户未来几乎必定要沿着虚拟化这条路前行。混合大数据云难以处理的异质性将推动用户选择这一方向。在私有云中,大数据平台融合需要一个虚拟化架构,以将新的方案与之前的投资相关联起来。然而,融合将会阻止用户持续的平台现代化与迁移尝试,妨碍用户将创新和适合的平台整合到云中,阻碍厂商的“产品-改良”循环。除非将所有的大数据方案都放到“通用的”公有云服务上,否则用户在多种组合方案中需要虚拟化公有云、私有云和混合云架构的访问。
当然,能沿着“数据-虚拟化”路线走多远,将取决于用户业务需求和大数据环境的复杂性。此外,还取决于用户对风险、复杂性和困难的承受程度。在未来,随着分析模型、规则和大数据云上汇聚的信息日益复杂,平台将成为虚拟化访问、执行和管理的核心。在这一新领域内,MapReduce将成为关键的(但并不是唯一的)开发框架。此外,MapReduce还将成为针对内联分析和交易计算的虚拟化架构的一部分。不过,目前这一虚拟化架构虽然涵盖范围更广,但是大部分仍没有被明确定义。
迄今为止,还没有人能够对这些将云与大数据世界拼接在一起的层、界面和抽象化展开进一步概述,而这也是一项摆在我们面前的艰巨任务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27