京公网安备 11010802034615号
经营许可证编号:京B2-20210330
哪些情况会让数据科学家抓狂
哪些情况会让数据科学家抓狂
如今,人们对数据科学的热情高涨。只要在产品介绍中加入"由人工智能驱动",就能极大地促进产品的销量。
但是,问题也接踵而至。
数据科学在营销时常常会夸大其词。从而,客户也大大提高了期望值。但最终,数据科学需要尽力去实现客户的高期望。
在本文中,我们将讨论机器学习项目中八个让数据科学家抓狂的常见问题,以及为什么这些问题让数据科学家苦恼不已。
如果你也处于数据科学领域,或者考虑进入该领域,那么明确这些问题能帮助你更好做出判断并进行处理。
1. 我们想要一个AI 模型来解决问题
行业中80%的问题都可以通过简单的探索性数据分析解决。如果在解决某些问题时用机器学习都有些大材小用,那么根本不用再考虑用AI了。
是的,高级分析很高大上。企业都喜欢通过对这方面的投资在行业中处于领先地位。哪家公司不想宣传一下 AI 项目呢?但需要对客户进行基本的说明,采用适当的行业用例。
“到目前为止,人工智能的最大危险在于人们过早的认为他们已经充分理解它了。”
—— Eliezer Yudkowsky
2. 通过一些数据得出变革性的分析见解
通常客户认为,他们只需要提交数据就可以了。有些客户甚至不会提供相关问题的定义,具体可以看到第四点。他们要求数据分析师获取数据,并得出变革性的商业见解,从而能够在一夜之间改变企业的发展方向。
不幸的是,数据科学家无法单独得出可操作的商业建议。这需要与客户进行持续有效的交流,从而全面了解企业的情况。在整个项目期间,定期与业务人员进行规划是很重要的。
“如果你不知道如何提出正确的问题,那么你将一无所获。”
—— W. Edward Deming
3. 构建模型,并跳过不必要的分析来节省时间
许多数据分析师忽略了数据整理和探索性分析的重要性。
数据分析是机器学习和其他更高层次分析的必要步骤。如果不了解数据,不去发现异常值或潜在模式,那么模型将一无是处。因此必须为分析预留时间,并与客户分享有价值的发现。
“炼金术士在寻找黄金时会发现其他许多更有价值的东西。”
—— Arthur Schopenhauer
4. 根据上周的数据,你能预测未来6个月的数据吗?
这是数据科学家们最讨厌的情况。客户在电子表格中提供了几行数据,并希望 AI 能够预测未来。有时更夸张,在没有任何数据时,客户想知道机器学习是否能填补这些数据的空白。
数据质量和数量至关重要,“垃圾进,垃圾出”适用于数据分析。有用的统计技术有助于处理数据问题,并能在你提供的少量数据中得出更多的结论。例如,估算缺失点,生成数据或使用较小的简单模型。但这需要降低客户对结果的预期。
分析技术与数据量的关系,来源:吴恩达
5. 你能在两周内完成建模项目吗?
许多项目的规定时间十分紧迫。这种高强度的项目安排常常会给模型工程阶段带来影响。随着模型API和GPU计算的出现,客户想知道到底时什么减慢了缓数据科学家的速度。
尽管自动化机器学习取得了进步,但在建模过程中手动操作也是必不可少的。数据科学家必须在痛苦的迭代中检查统计结果,比较模型和检查解释。这些是不能自动化的,起码现在还不能。这方面最好通过案例跟客户说明。
6. 你能替换输出变量并刷新吗?
在数据科学家解决了商业行为的建模问题之后,新的请求即将出现,也就是最后的小变化。通常是替换输出变量,然后重新运行模型。客户意识不到这些变化不仅会改变目标,而且会改变整个模型。
虽然机器学习是高度迭代的,但关键挑战是为给定的输出变量选择正确的影响因素,并映射它们间的关系。客户必须了解这背后的基本工作原理,以及明确他们可以调控的范围。
7. 模型的准确度可以达到100%吗?
人们经常会对错误率产生误解,而且容易盲目追求测试等级。有些客户甚至希望准确度达到100%。当准确度超过其他因素成为唯一的关注点时,这就很令人担忧了。建立一个过于复杂却无法实现的高准确度模型有什么意义呢?
以高准确度赢得Netflix奖的模型从未正式上线,因为高度的复杂性会带来巨大的工程成本,反而准确度较低的模型则会被采用。因此在考虑准确度时,要权衡简单性、稳定性和业务可解释性。
模型工程:权衡各方面的因素
8. 训练好的模型能一直不出问题吗?
在艰辛地完成建模和测试之后,客户想知道机器是否已经掌握了所有内容。常见的问题是模型是否能一直不出问题,并且适应未来业务的变化?
不幸的是,机器不能终身学习。需要进行不断地训练,通常需要每隔几周或几个月进行复习和训练,就像寒窗苦读的学子一样。如今的分析行业在迅速发展,瞬息万变,因此模型也需要不断进行维护和更新。
结语
在机器学习项目中,以上八大误区会让数据科学家头疼不已,在机器学习建模生命周期的六个阶段也会出现类似问题,如下图所示。
机器学习项目生命周期
导致上述误区的原因在于缺乏对项目的了解,以及没有正确把握主次。了解背后这些原因的数据科学家需要对客户进行更好的说明,从而双方能够更好得解决难题,而不是一味的妥协。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13