
神经网络测试结果很差,该怎么做
当我们编程实现了神经网络模型,将模型用于测试集时,经常会发现测试的准确率非常的低,神经网络层数很深,通常我们不容易判断具体的梯度下降求解参数的过程,那我们该怎么办呢?从机器学习视频中总结的办法!!小程序亲身体验过!
首先要明白,测试集上的准确率低并不一定是过拟合。有可能在训练集上准确率就很低,也就是说你的模型压根没有训练好!!
所以:首先,要用训练好的模型在训练集上跑一遍,如果在训练集上准确率就很低,那么就不是过拟合,而是欠拟合。
原因是在梯度下降求导时,卡在了local minima(在求导为0,是极小值),saddle point(求导为0,不是极小值),plateau(求导近似为0)上。
解决这个问题可以有两个做法:1是改变激活函数;2是改变梯度下降求导方式;后边会详细讲。
然后:如果在训练集上准确率很好,在测试集上准确率低,那么就是过拟合(overfitting)。
解决办法是:1是早点停止梯度更新;2是更多的数据(通过数据增强获得更多数据);3是正则化(l1-torm和l2-torm);4是Dropout方法。下边将详细介绍。
解决欠拟合的1方法:改变激活函数。一定程度上,欠拟合是因为激活函数选择了sigmoid函数。对于sigmoid函数来说,致命的问题就是梯度消失,sigmoid会衰减输入。梯度消失的含义是:在靠近输出层的参数更新梯度很大,在靠近输入层的参数更新梯度很小,导致在学习率一致的情况下,在靠近输出层的后几层参数更新快,在已经收敛的时候,靠近输入层参数更新很慢,还是接近随机状态,使得靠近输出层参数接收的input接近随机。
我们换用RELU激活函数就可以解决梯度消失的问题。在input<0时,output = 0, 在input>0时,output = input,这样在计算时,参数会少于整体神经元个数,RELU计算很快。Leaky RELU、Parametric RELU等是RELU的变种,用RELU可以解决一般欠拟合。
另外maxout也是一种激活函数,RELU是maxout的一种特例,它可以实现每个神经元都有自己不同的激活函数,但是maxout参数多于其他激活函数(因为每有一个输出,都要在一组给定数目的输出(参数)中选择一个最大的作为输出,而其他的激活函数,都是给一组参数,产生一个输出)。虽然参数变多了,但是在训练时,我们梯度下降只更新一组输出中选出的那个输出对应的参数!!!!并且训练集数据很多,每个数据都会梯度更新不同的参数。maxout是根据数据自动学习权重,模型参数训练好了,模型固定了,也就得到不同的激活函数。
解决欠拟合方法2:改变梯度下降策略;
可以尝试其他的梯度下降函数,比如Adagrad、RMSProp、Momentum、Adam(=Momentum+RMSProp),它们按照一定权重考虑了新梯度值和旧梯度值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03