
Spark一种快速数据分析替代方案
Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。
尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoo 文件系统中并行运行。通过名为 Mesos 的第三方集群框架可以支持此行为。Spark 由加州大学伯克利分校 AMP 实验室 (Algorithms, Machines, and People Lab) 开发,可用来构建大型的、低延迟的数据分析应用程序。
Spark 集群计算架构
虽然 Spark 与 Hadoop 有相似之处,但它提供了具有有用差异的一个新的集群计算框架。首先,Spark 是为集群计算中的特定类型的工作负载而设计,即那些在并行操作之间重用工作数据集(比如机器学习算法)的工作负载。为了优化这些类型的工作负载,Spark 引进了内存集群计算的概念,可在内存集群计算中将数据集缓存在内存中,以缩短访问延迟。
Spark 还引进了名为 弹性分布式数据集 (RDD) 的抽象。RDD 是分布在一组节点中的只读对象集合。这些集合是弹性的,如果数据集一部分丢失,则可以对它们进行重建。重建部分数据集的过程依赖于容错机制,该机制可以维护 “血统”(即充许基于数据衍生过程重建部分数据集的信息)。RDD 被表示为一个 Scala 对象,并且可以从文件中创建它;一个并行化的切片(遍布于节点之间);另一个 RDD 的转换形式;并且最终会彻底改变现有 RDD 的持久性,比如请求缓存在内存中。
Spark 中的应用程序称为驱动程序,这些驱动程序可实现在单一节点上执行的操作或在一组节点上并行执行的操作。与 Hadoop 类似,Spark 支持单节点集群或多节点集群。对于多节点操作,Spark 依赖于 Mesos 集群管理器。Mesos 为分布式应用程序的资源共享和隔离提供了一个有效平台(参见 图 1)。该设置充许 Spark 与 Hadoop 共存于节点的一个共享池中。
图 1. Spark 依赖于 Mesos 集群管理器实现资源共享和隔离。
Spark 编程模式
驱动程序可以在数据集上执行两种类型的操作:动作和转换。动作 会在数据集上执行一个计算,并向驱动程序返回一个值;而转换 会从现有数据集中创建一个新的数据集。动作的示例包括执行一个 Reduce 操作(使用函数)以及在数据集上进行迭代(在每个元素上运行一个函数,类似于 Map 操作)。转换示例包括 Map 操作和 Cache 操作(它请求新的数据集存储在内存中)。
我们随后就会看看这两个操作的示例,但是,让我们先来了解一下 Scala 语言。
Scala 简介
Scala 可能是 Internet 上不为人知的秘密之一。您可以在一些最繁忙的 Internet 网站(如 Twitter、LinkedIn 和 Foursquare,Foursquare 使用了名为 Lift 的 Web 应用程序框架)的制作过程中看到 Scala 的身影。还有证据表明,许多金融机构已开始关注 Scala 的性能(比如 EDF Trading 公司将 Scala 用于衍生产品定价)。
Scala 是一种多范式语言,它以一种流畅的、让人感到舒服的方法支持与命令式、函数式和面向对象的语言相关的语言特性。从面向对象的角度来看,Scala 中的每个值都是一个对象。同样,从函数观点来看,每个函数都是一个值。Scala 也是属于静态类型,它有一个既有表现力又很安全的类型系统。
此外,Scala 是一种虚拟机 (VM) 语言,并且可以通过 Scala 编译器生成的字节码,直接运行在使用 Java Runtime Environment V2 的 Java™ Virtual Machine (JVM) 上。该设置充许 Scala 运行在运行 JVM 的任何地方(要求一个额外的 Scala 运行时库)。它还充许 Scala 利用大量现存的 Java 库以及现有的 Java 代码。
最后,Scala 具有可扩展性。该语言(它实际上代表了可扩展语言)被定义为可直接集成到语言中的简单扩展。
Scala 的起源
Scala 语言由 Ecole Polytechnique Federale de Lausanne(瑞士洛桑市的两所瑞士联邦理工学院之一)开发。它是 Martin Odersky 在开发了名为 Funnel 的编程语言之后设计的,Funnel 集成了函数编程和 Petri net 中的创意。在 2011 年,Scala 设计团队从欧洲研究委员会 (European Research Council) 那里获得了 5 年的研究经费,然后他们成立新公司 Typesafe,从商业上支持 Scala,接收筹款开始相应的运作。
举例说明 Scala
让我们来看一些实际的 Scala 语言示例。Scala 提供自身的解释器,充许您以交互方式试用该语言。Scala 的有用处理已超出本文所涉及的范围,但是您可以在 参考资料 中找到更多相关信息的链接。
清单 1 通过 Scala 自身提供的解释器开始了快速了解 Scala 语言之旅。启用 Scala 后,系统会给出提示,通过该提示,您可以以交互方式评估表达式和程序。我们首先创建了两个变量,一个是不可变变量(即 vals,称作单赋值),另一个变量是可变变量 (vars)。注意,当您试图更改 b(您的 var)时,您可以成功地执行此操作,但是,当您试图更改 val 时,则会返回一个错误。
清单 1. Scala 中的简单变量
$ scalaWelcome to Scala version 2.8.1.final (OpenJDK Client VM, Java 1.6.0_20).
Type in expressions to have them evaluated.
Type :help for more information.
scala> val a = 1a: Int = 1
scala> var b = 2b: Int = 2
scala> b = b + ab: Int = 3
scala> a = 26: error: reassignment to val
a = 2
^
接下来,创建一个简单的方法来计算和返回 Int 的平方值。在 Scala 中定义一个方法得先从def 开始,后跟方法名称和参数列表,然后,要将它设置为语句的数量(在本示例中为 1)。无需指定任何返回值,因为可以从方法本身推断出该值。注意,这类似于为变量赋值。在一个名为 3的对象和一个名为 res0 的结果变量(Scala 解释器会自动为您创建该变量)上,我演示了这个过程。这些都显示在 清单 2 中。
清单 2. Scala 中的一个简单方法
scala> def square(x: Int) = x*xsquare: (x: Int)Int
scala> square(3)res0: Int = 9
scala> square(res0)res1: Int = 81
接下来,让我们看一下 Scala 中的一个简单类的构建过程(参见 清单 3)。定义一个简单的Dog 类来接收一个 String 参数(您的名称构造函数)。注意,这里的类直接采用了该参数(无需在类的正文中定义类参数)。还有一个定义该参数的方法,可在调用参数时发送一个字符串。您要创建一个新的类实例,然后调用您的方法。注意,解释器会插入一些竖线:它们不属于代码。
清单 3. Scala 中的一个简单的类
scala> class Dog( name: String ) {
| def bark() = println(name + " barked")
| }defined class Dog
scala> val stubby = new Dog("Stubby")stubby: Dog = Dog@1dd5a3d
scala> stubby.barkStubby barked
scala>
完成上述操作后,只需输入 :quit 即可退出 Scala 解释器。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11