京公网安备 11010802034615号
经营许可证编号:京B2-20210330
多做这几步,让你的Excel文件更“贴心”
你是否有过这样的经历:
好不容易花了好几天时间,终于算出了一份自己满意的EXCEL数据结果,小心翼翼地发给老板过目。
但,还是被有完美主义强迫症的老板diss了!
你交的“作业”是不是长得像下面这样,
为了博得老板欢心,赢得同事赞赏,这里将传授你一些小技巧,只需多做简单几步,就能让你的“作业”更“贴心”,颜值大增!
Step 1:冻结首行 + 筛选首行
为什么要冻结首行呢?可以反着来想,即如何不冻结首行,会怎么样?
即当查看后面的数据时,第一行的指标就看不见了,那就不知道具体列所对应的指标,就像下面这样,
Step 2:加边框
选定有数据的单元格,使用快捷键Ctrl+A,全选该单元格所在的数据区域,加实线边框。
Step 3:调整格式
为阅读体验良好,字符型的数据列左对齐,数值型的数据列最好右对齐,而且同一列统一保留相同的小数位。
另外,本来是数值的数据列显示为字符型,需要转换为数值型。
记住,不管数值还是字符的数据列,最好不要居中对齐,这样阅读起来特别费劲,体验不好!
Step 4:调整列宽
在有限的展现区域里,既要保证展示信息的最大化,又要保证展示信息的完整性。
基于这个原则,既要求每列数据能完全显示该列数值,也要保证每列的宽度是最小的合适宽度,这样就可以在电脑屏幕这样有限区域范围内一次显示出更多列的数据,方便使用人更好地决策或发现问题。
选择所有数据列,将鼠标移到最后一列的位置,鼠标变为“←→”的形状,单击往右拖动适当宽度,这时所有列的宽度一致,再把鼠标移至最后一列的未知,鼠标变为“←→”的形状,双击,这时所有列的宽度就自动调整为完全显示信息的最小宽度。
如果某些单元格的值长度很大,可以将所在列设置为自动换行,并手工调整列宽至合适的范围。
Step 5:强调首行
对首行做强调显示,可以对首行字体加粗,单元格背景着色,并左右居中,这主要为了突出提示首行是指标。
Step 6:上下居中
例如,下面首行出现了一些单元格顶端对齐或低端对齐,看起来不统一,有点乱!
使用快捷键Ctrl+A,全选数据区域,选择对齐方式—上下居中,保证所有单元格数据都垂直居中显示。
经过了六步操作,最后“作业”变成了这样,是不是看着顺眼多了^_^~~
整个操作流程如下:
你看,只要多做这么简单几步,别人也就少做几步,就会有不错的阅读体验,快速get到你的用心,对你好感度飙升哦~~
工作中很多成果需要输出给别人,我们可以将用户思维应用到工作中的很多细节,把别人当作是自己的用户,一切从用户角度出发,认真打造出好的产品,让别人用得更舒心!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06