京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据背景下如何做好全面预算
随着大数据概念的普及,商业智能、多维分析、数据挖掘、人工智能、机器学习等概念纷纷引入到企业管理应用领域。在大数据背景下,如何通过全面预算与大数据相结合的方式,发挥大数据在数据分析、数据挖掘方面的价值,使全面预算管理真正成为连通企业战略和经营的利器,为企业决策支撑提供助力,是当下企业信息化建设中必须重点考虑的一环。
针对当前企业密切关注的“大数据背景下如何做好全面预算”问题,本土化全面预算系统领军企业智达方通认为,企业想成为大数据时代的弄潮儿,不仅需要建立完备的全面预算体系,还需在全面预算系统的基础上,运用大数据为全面预算管理提供新路径、新工具和新方法,变现大数据价值,助力企业更全面、更深刻的洞察经营管理状态,为企业决策提供数据支撑。
全面预算软件系统作为企业的预算管理以及决策支持平台系统,会有很多业务系统与其对接,以提供业务实际数据,如财务总账、项目管理、资金管理、人事、生产制造、库存管理、资产管理等各系统。随着企业的业务越来越复杂,规模越来越大,各业务系统产生的数据也会越来越多。尽管推送到预算系统的数据经过清洗转换降低了数据量,但其数据量仍然会随企业业务的变化而增长。这时就在实际发生的业务数据层面上形成了大数据。
在预算编报和测算角度,随着企业规模和业务复杂程度的增加,编报产生的计划预算数据也会越来越多,加上多版本,多场景,以及数年的累计,数据量增长到亿、百亿级别也是非常可能的。
全面预算作为管理会计信息化和财务分析领域的传统业务,其可以采用的数据分析方式主要有两种:EDA(Exploratory Data Analysis)-探索性数据分析;CDA(Confirmatory Data Analysis)-验证性数据分析。
探索性数据分析(EDA)用于找到数据间的模式和相关性,是一种“参考答案”的获取。应用场景包括大家熟知的“啤酒尿布”类数据挖掘应用,工具包括SAS,SPSS这类数据挖掘软件以及R语言类语言工具。探索性数据分析的优点是可以从一堆貌似杂乱无章的数据中找到一些相关性和模式来辅助决策,其缺点是有可能会找到一些无意义的相关性,比如所有生过孩子的用户都是女性。
验证性数据分析(CDA),是在明确了分析模型和算法的情况下,需要基于已有数据计算出结果,可以称之为是一种“准确答案“的获取。典型的应用场景就是基于多维数据仓库的OLAP分析应用。在企业应用最广泛的就是EPM-Enterprise Performance Management(企业绩效管理),其中包括全面预算,商业智能等应用。与"啤酒尿布”这种探索性数据挖掘应用相比,OLAP分析的结果只能是唯一的准确答案。比如通过企业管理要求设定的业务规则,计算出的利润率只能是一个数字,不可能是“利润率有可能是11.5%”这种参考答案。验证性数据分析类系统包括Oracle Hyperion, IBM Cognos以及智达方通Intcube EPM,其共同特点为都是基于多维数据仓库的OLAP分析工具平台。
另外,基于Hadoop,HBase,Kylin等开源项目的方案,目前仍然不能满足全面预算或财务分析信息化领域的需求,原因是企业在全面预算或财务分析方面的需求,不是仅仅基于大数据的查询或搜索这些“只读操作”就能满足需求。全面预算领域需要能够支持复杂的业务规则计算,并且这些业务规则在实际应用中可以经常由最终使用者,如财务部门,业务部门人员调整更改,而无需开发人员通过编写程序或者SQL脚本实现分析方法的调整。这就要求支持MDX的OLAP计算引擎成为全面预算软件系统的必要条件,而以上这几个开源项目并不能支持MDX等计算脚本功能。
与Tableau和一些BI仪表板项目的只读数据可视化工具相比,全面预算的编报过程,以及业务规则的运算过程,会产生大量的写操作。因此,对数据仓库平台的要求有两点:一是支持频繁的写操作,二是支持业务规则脚本计算。目前对于国内的商用数据仓库软件提供商来说,实现这两点并非难事,但真正的难点在于如何在十亿级甚至百亿级的数据量下,保证单个数据集市-CUBE能有很好的读写和业务规则计算性能,这是所有多维数据仓库软件厂商需要面临的挑战。针对该问题,国内多维数据仓库领域及企业绩效管理领域技术专家、北京智达方通总经理蔡志宏先生认为,其解决方案应该是在数据仓库核心功能开发时,支持数据的分布式存储,通过数据的多节点存储,提升读写IO效率,同时要优化动态计算效率,优化预计算和动态计算之间的平衡,以及优化动态计算时数据块中的寻址效率。
可以预见的是,大数据时代的到来将改变传统全面预算实施的局限性,为企业实施全面预算提供更全面可靠的全样本数据支撑,给全面预算管理提供新机遇和新思路。未来,智达方通将以匠人之心,继续深入研究大数据背景下的企业全面预算管理模式,为企业实现信息化管理提供更优质的全面预算解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28