
大数据背景下如何做好全面预算
随着大数据概念的普及,商业智能、多维分析、数据挖掘、人工智能、机器学习等概念纷纷引入到企业管理应用领域。在大数据背景下,如何通过全面预算与大数据相结合的方式,发挥大数据在数据分析、数据挖掘方面的价值,使全面预算管理真正成为连通企业战略和经营的利器,为企业决策支撑提供助力,是当下企业信息化建设中必须重点考虑的一环。
针对当前企业密切关注的“大数据背景下如何做好全面预算”问题,本土化全面预算系统领军企业智达方通认为,企业想成为大数据时代的弄潮儿,不仅需要建立完备的全面预算体系,还需在全面预算系统的基础上,运用大数据为全面预算管理提供新路径、新工具和新方法,变现大数据价值,助力企业更全面、更深刻的洞察经营管理状态,为企业决策提供数据支撑。
全面预算软件系统作为企业的预算管理以及决策支持平台系统,会有很多业务系统与其对接,以提供业务实际数据,如财务总账、项目管理、资金管理、人事、生产制造、库存管理、资产管理等各系统。随着企业的业务越来越复杂,规模越来越大,各业务系统产生的数据也会越来越多。尽管推送到预算系统的数据经过清洗转换降低了数据量,但其数据量仍然会随企业业务的变化而增长。这时就在实际发生的业务数据层面上形成了大数据。
在预算编报和测算角度,随着企业规模和业务复杂程度的增加,编报产生的计划预算数据也会越来越多,加上多版本,多场景,以及数年的累计,数据量增长到亿、百亿级别也是非常可能的。
全面预算作为管理会计信息化和财务分析领域的传统业务,其可以采用的数据分析方式主要有两种:EDA(Exploratory Data Analysis)-探索性数据分析;CDA(Confirmatory Data Analysis)-验证性数据分析。
探索性数据分析(EDA)用于找到数据间的模式和相关性,是一种“参考答案”的获取。应用场景包括大家熟知的“啤酒尿布”类数据挖掘应用,工具包括SAS,SPSS这类数据挖掘软件以及R语言类语言工具。探索性数据分析的优点是可以从一堆貌似杂乱无章的数据中找到一些相关性和模式来辅助决策,其缺点是有可能会找到一些无意义的相关性,比如所有生过孩子的用户都是女性。
验证性数据分析(CDA),是在明确了分析模型和算法的情况下,需要基于已有数据计算出结果,可以称之为是一种“准确答案“的获取。典型的应用场景就是基于多维数据仓库的OLAP分析应用。在企业应用最广泛的就是EPM-Enterprise Performance Management(企业绩效管理),其中包括全面预算,商业智能等应用。与"啤酒尿布”这种探索性数据挖掘应用相比,OLAP分析的结果只能是唯一的准确答案。比如通过企业管理要求设定的业务规则,计算出的利润率只能是一个数字,不可能是“利润率有可能是11.5%”这种参考答案。验证性数据分析类系统包括Oracle Hyperion, IBM Cognos以及智达方通Intcube EPM,其共同特点为都是基于多维数据仓库的OLAP分析工具平台。
另外,基于Hadoop,HBase,Kylin等开源项目的方案,目前仍然不能满足全面预算或财务分析信息化领域的需求,原因是企业在全面预算或财务分析方面的需求,不是仅仅基于大数据的查询或搜索这些“只读操作”就能满足需求。全面预算领域需要能够支持复杂的业务规则计算,并且这些业务规则在实际应用中可以经常由最终使用者,如财务部门,业务部门人员调整更改,而无需开发人员通过编写程序或者SQL脚本实现分析方法的调整。这就要求支持MDX的OLAP计算引擎成为全面预算软件系统的必要条件,而以上这几个开源项目并不能支持MDX等计算脚本功能。
与Tableau和一些BI仪表板项目的只读数据可视化工具相比,全面预算的编报过程,以及业务规则的运算过程,会产生大量的写操作。因此,对数据仓库平台的要求有两点:一是支持频繁的写操作,二是支持业务规则脚本计算。目前对于国内的商用数据仓库软件提供商来说,实现这两点并非难事,但真正的难点在于如何在十亿级甚至百亿级的数据量下,保证单个数据集市-CUBE能有很好的读写和业务规则计算性能,这是所有多维数据仓库软件厂商需要面临的挑战。针对该问题,国内多维数据仓库领域及企业绩效管理领域技术专家、北京智达方通总经理蔡志宏先生认为,其解决方案应该是在数据仓库核心功能开发时,支持数据的分布式存储,通过数据的多节点存储,提升读写IO效率,同时要优化动态计算效率,优化预计算和动态计算之间的平衡,以及优化动态计算时数据块中的寻址效率。
可以预见的是,大数据时代的到来将改变传统全面预算实施的局限性,为企业实施全面预算提供更全面可靠的全样本数据支撑,给全面预算管理提供新机遇和新思路。未来,智达方通将以匠人之心,继续深入研究大数据背景下的企业全面预算管理模式,为企业实现信息化管理提供更优质的全面预算解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27