京公网安备 11010802034615号
经营许可证编号:京B2-20210330
AI引领商业智能化时代
有人说:世界经济过去二十年主要靠IT,但未来五十年靠的是AI(人工智能);也有人说:AI将会给人类带来的威胁,将从实业衰败开始,并以人机战争结束。尽管,我们一边操心着美国越来越多的大商场都用自动结款机后零售业的1600万员工是不是快失业了;但仍一边期待新的变革到底如何颠覆。
AI技术引爆工业4.0时代商业迈进智能化决策时代
眼下,各大科技巨头纷纷布局人工智能。就在国务院规划出台的同一天,2017联想全球创新科技大会上“让世界充满AI”的主题也刷爆了朋友圈。联想集团高级副总裁贺志强表示,智能互联网在未来十年是最好的投资机会,同时列举未来人工智能的发展及投资将重点布局六大方向:普适计算、AR/VR、AI核心驱动力改造所有传统行业、数据中心重塑、公有云服务及IT转型。
有媒体评论称,AI正在引发的第四次工业革命,让联想的企业转型之路充满了动力,也让刘强东和李斌等人借这“AI”风口,怒刷了一回存在感。
实际上,从18世纪至今,在这200多年的时间里,世界通过三次工业革命完成了机械化、电气化、信息化的变革,而每一次的工业革命都给我们的经济、社会、人文等各个方面带来翻天覆地的变化。如果说,前三次工业革命重点解决的是生产效率和产能问题,更多的是释放人类肌肉的力量的话,那么第四次工业革命的主要使命,就是解放人类脑力劳动,帮助人类进入智能化决策时代。
早在2016商业评论大会上,阿里巴巴集团首席战略官曾鸣曾表示,在未来智能无所不在。现今社会云计算、大数据、人工智能等领域的变化带来了社会各个方面的进步,比如基因工程、新材料、人工智能物联网等方面。而在这样巨大的变革背景下,最重要的变化则是一切商业的未来都必须智能化。
商业智能化是未来最重要的发展趋势。智能物联时代和智能商业化时代的到来,既意味着传统行业面临被倒逼升级的挑战,但更多带来的是创新发展的机遇。如何通过智能化和数据化提升企业的运营水平,并通过智能应用以及大数据挖掘洞察不断满足消费者的需求,成为各行业领头羊的共同探索方向。
智能物联风口爆发在即资本争相布局商业智能化
何为智能化?其核心是未来商业的决策会越来越多地依赖于机器学习、人工智能,机器在很多商业决策上将扮演非常重要的角色,它能取得的效果超过今天人工运作带来的效果。
简单来说,商业智能化即是要做数据化、算法化和产品化这三件事情。当今人工智能的技术核心既是数据化,归根结底是通过机器对大数据不断计算反馈的优化结果。有了数据化基础,随之而来的则是基于数据挖掘价值,即为通过写代码回归程序的路径实现算法化,进而实现价值转化。所以算法化绝对是在互联网时代能够创造巨大价值的新概念。在此基础上,通过数据提取、计算、修正调整、反馈等一系列过程,加上对垂直领域的理解,利用技术形成解决方案的产品化环节则是至关重要的一环。
智能化所带来的价值将或将达到空前的高度,它是基于大数据技术创新上搭建的全新智能运营模式。从商业智能化的趋势来看,未来数据处理也将作为公共基础设施服务存在于新智能时代。而中国这一全球最大市场,仍被视为实现商业智能化的最佳市场。上海市中国特色社会主义理论体系研究中心研究员、华东政法大学教授高奇琦等多位专家表示,中国地大物博人口众多,在人工智能替代领域具有诸多优势。
事实上,我国已经在人工智能领域全面发力,7月20日国务院发布《新一代人工智能发展规划》称,到2030年人工智能理论、技术与应用总体达到世界领先水平,核心产业规模预计超过1万亿元。同时支持国内人工智能企业开展海外并购、股权投资、创业投资和建立海外研发中心等发展模式。
随着计算机成本的下降以及搜集和处理数据能力的快速提升,大数据应用基础已日渐成熟。可以预测,下一阶段将成为人工智能和物联网应用的爆发阶段,市场潜力得以释放。与此同时,国内针对人工智能领域的初创企业投资也正经历着爆发式的增长,使得2017年有望成为全球人工智能商业化运用的元年。
资本的动向正是判断人工智能前景最灵敏的风向标。根据KPMG的研究数据表明,2016年风险投资已经从大数据转向到AI人工智能;乌镇智库数据显示,去年中国AI企业总投资达到26亿美元,美国同期最高预计投资179亿美元;据网易报道,2016年202个中国AI初创公司募集了近10亿美元。
据统计显示,就在刚刚过去的一个月内,包括中国创业公司商汤科技、机器人公司Geek+、云脑科技等国内多家与人工智能相关的企业均获得了最新的融资进展。其中,卡位智能物联网的生态平台特斯联科技,更创下国内移动物联网行业的最大融资额,被视为商业智能化时代的下一代“独角兽”。据悉,特斯联(北京)科技有限公司,已于2016年底完成共计5亿人民币A1+A2轮融资;据公布资料显示,本轮融资由中国光大旗下基金与IDG资本、中信系产业资本以及其它战略投资人共同完成。
开辟物联网创新商业模式特斯联欲撬动“后地产时代”千亿级市场
Google移动平台副总裁安迪·鲁宾曾说过,下一个计算大浪潮将出现在人工智能领域,机器人和自动化技术将进入人们的生活。
想象一下,在未来社会的各行各业中,流水线工人、企业客服、司机等单纯机械重复和缺乏创造力的职业将首先被人工智能代替,随后是具有较高附加价值、相对机械重复、可替代度高的网络编辑、语言翻译及医疗行业等职业。人工智能将充分发挥其社会价值,智能化技术让交通变成了智能交通,医疗变成了智能医疗,同时也推动智能农业、智能城市等等出现。
未来城市将会是万物互联的智慧体,通过智能化、数据化手段升级工业、农业、房地产产业,盘活海量的存量市场。在城市中,产业智能化将成为“后地产时代”最大的挑战,同时,这也是未来物联网创新商业模式的机会所在。
正如城市演化过程中,建筑扮演了城市的重要组成部分一样,建筑也承载了城市基本的服务功能。然而在物联网、人工智能等技术日新月异的今天,建筑和城市的设备设施、运营管理等却停留在昨天,从经济成长、世界潮流及人类需求的角度而言,城市智能化发展已是刻不容缓的议题。
如今,站在能够预见到未来的科技大门之前,我们能够看到,在智能商业化的时代中,无人驾驶会取代司机,语音识别软件会取代翻译、人工智能会取代医生进行精密手术操作,一系列现存的职业及行业将会随着科技时代的进步慢慢消失,但有的行业却将迎来千载难逢的机会;如同特斯联科技般的智能物联网领军企业,运用数据处理、自动化管理,将钢筋水泥的传统建筑升级为智慧生命体,完成建筑乃至是城市的智能化升级,必将带来焕然一新的未来城市新生活。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04