
将Python的Django框架与认证系统整合的方法
这篇文章主要介绍了将Python的Django框架与认证系统整合的方法,包括指定认证后台和编写认证后台等内容,需要的朋友可以参考下
将Django与其他现有认证系统的用户名和密码或者认证方法进行整合是可以办到的。
例如,你所在的公司也许已经安装了LDAP,并且为每一个员工都存储了相应的用户名和密码。 如果用户在LDAP和基于Django的应用上拥有独立的账号,那么这时无论对于网络管理员还是用户自己来说,都是一件很令人头痛的事儿。
为了解决这样的问题,Django认证系统能让您以插件方式与其他认证资源进行交互。 您可以覆盖Diango默认的基于数据库的模式,您还可以使用默认的系统与其他系统进行交互。
指定认证后台
在后台,Django维护了一个用于检查认证的后台列表。 当某个人调用 django.contrib.auth.authenticate() (如14章中所述)时,Django会尝试对其认证后台进行遍历认证。 如果第一个认证方法失败,Django会尝试认证第二个,以此类推,一直到尝试完。
认证后台列表在AUTHENTICATION_BACKENDS设置中进行指定。 它应该是指向知道如何认证的Python类的Python路径的名字数组。 这些类可以在你Python路径的任何位置。
默认情况下,AUTHENTICATION_BACKENDS被设置为如下:
('django.contrib.auth.backends.ModelBackend',)
那就是检测Django用户数据库的基本认证模式。
AUTHENTICATION_BACKENDS的顺序很重要,如果用户名和密码在多个后台中都是有效的,那么Django将会在第一个正确匹配后停止进一步的处理。
编写认证后台
一个认证后台其实就是一个实现了如下两个方法的类: get_user(id) 和 authenticate(**credentials) 。
方法 get_user 需要一个参数 id ,这个 id 可以是用户名,数据库ID或者其他任何数值,该方法会返回一个 User 对象。
方法 authenticate 使用证书作为关键参数。 大多数情况下,该方法看起来如下:
class MyBackend(object):
def authenticate(self, username=None, password=None):
# Check the username/password and return a User.
但是有时候它也可以认证某个短语,例如:
class MyBackend(object):
def authenticate(self, token=None):
# Check the token and return a User.
每一个方法中, authenticate 都应该检测它所获取的证书,并且当证书有效时,返回一个匹配于该证书的 User 对象,如果证书无效那么返回 None 。 如果它们不合法,就返回None。
Django管理系统紧密连接于其自己后台数据库的 User 对象。 实现这个功能的最好办法就是为您的后台数据库(如LDAP目录,外部SQL数据库等)中的每个用户都创建一个对应的Django User对象。 您可以提前写一个脚本来完成这个工作,也可以在某个用户第一次登陆的时候在 authenticate 方法中进行实现。
以下是一个示例后台程序,该后台用于认证定义在 setting.py 文件中的username和password变量,并且在该用户第一次认证的时候创建一个相应的Django User 对象。
from django.conf import settings
from django.contrib.auth.models import User, check_password
class SettingsBackend(object):
"""
Authenticate against the settings ADMIN_LOGIN and ADMIN_PASSWORD.
Use the login name, and a hash of the password. For example:
ADMIN_LOGIN = 'admin'
ADMIN_PASSWORD = 'sha1$4e987$afbcf42e21bd417fb71db8c66b321e9fc33051de'
"""
def authenticate(self, username=None, password=None):
login_valid = (settings.ADMIN_LOGIN == username)
pwd_valid = check_password(password, settings.ADMIN_PASSWORD)
if login_valid and pwd_valid:
try:
user = User.objects.get(username=username)
except User.DoesNotExist:
# Create a new user. Note that we can set password
# to anything, because it won't be checked; the password
# from settings.py will.
user = User(username=username, password='get from settings.py')
user.is_staff = True
user.is_superuser = True
user.save()
return user
return None
def get_user(self, user_id):
try:
return User.objects.get(pk=user_id)
except User.DoesNotExist:
return None
更多认证模块的后台, 参考Django文档。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25