京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何在今天的分析环境中强化BI的价值
企业日常中的BI与分析工具可能会存在一些差异,但是,对这些工具中的每一个分析视图进行全面的了解将会让企业获得更为有效的洞察与结论。
对比于近来刷爆朋友圈的区块链以及始终处于热议中的AI,似乎这段时间内商业智能(BI)显得有些沉寂。实际上,在彼此功能出现重叠之后,AI也取代了一部分BI的功能,这似乎也让人们也不再对BI具有那么多的兴趣。然而这并不意味着BI失去了在企业中的价值。
美国国家电力网络数据分析及创新总监Rory Abbazio说道,“商业智能正在发生改变,为了保持竞争力,我们也必须随之而改变”。
在过去几年中,BI中发生的最大改变就是它正在转变为一种自我服务式的应用,这种变化使得用户眼中的那些标准报告内容价值有所下降,但却提升了公司对于用户推动型数据的探索。
不过,传统的报告模式并未就此消失。在最近Gartner的数据与分析峰会上,Abbazio表示,他和他的团结仍然在建立并维护那些传统的固定报告和执行仪表盘。 但是,为了能够产生效用,这些传统报告需要整合到更广泛的平台中,比如自助服务工具或高级分析工具平台。
Abbazio说道,“我们希望能够在分析所涉及的范围内实现所有的功能,而不仅关注报告。我们也乐意接受像AI和增强智能等前沿科技”。 因此,Abbazio的团队建立其了一个企业分析门户,该平台的功能就是针对于每一个人的数据需求提供一站式的服务。它具有内置于Tableau的标准BI报告和自助式数据探索功能,并包含用于数据数据的Alteryx软件。此外,该平台还具有密集型数据的科学工具,如R、Python和H2O等。
Abbazio表示,将上述功能及工具集成在一起意味着对角色转变的承认,如今BI报告开发者和数据科学家二者的角色正在合而为一。事实上,为了确保BI可以带来持续性的价值,无论自身的角色与身份,人们都需要即时获取所需的信息并在需要时进行分析。
新角色需要全新的交付模式
由于公司中人们的角色发生了转变,来自于不同行业的公司均开始重新审视与评估BI和分析的使用价值。 Gartner 的分析师 James Richardson认为,这也迫使公司组织采用全新的模式已获得那些全新功能的价值。
他表示,IT部门所交付的传统BI报告模型在现代性的企业中并不适用,因为开发与交付报告的过程会耗费大量的时间,而静态的BI报告自身效用也有限。同时,影子IT(业务线部门去实施自己的工具)还会产生冗余和孤岛等问题。
所以,Richardson推荐了一种混合式的方法,比如先创建一个集中性的分析团队来设置治理、最佳实践和工具。然后,将成员分散到不同的业务线部门中,并让他们定期对公司进行各自部门BI和分析项目的报告。
“这说明了实际的情况,人们总是用Excel对数据进行分布式的分析。而我们现在要说的是,我们其实可以为你提供更好的工具”,Richardson说道。
灵活的平台是创造BI和分析价值的关键
Gartner的另一位分析师,Joao Tapadinhas也在峰会发表了自己的看法,他说道,分析平台的灵活性是实现BI价值最大化的关键。BI的典型功能,就是对关键绩效指标进行监控以帮助企业了解自身业务的表现,这点仍然很重要。不过,这并不会给企业带来革命性的变化,所以Tapadinhas建议将这种KPI监控功能纳入到其他具有更高价值的BI功能中。
而自动化服务将推动上述进程的发展。随着软件供应商将高级的机器学习和AI集成到他们的平台中,企业可以很轻松地进行BI功能的添加,这使得用户只需在需要进行信息检查时去查看一些预定义的指标,而不再需要去等待开发团队构建和维护的报告。
“你现在拥有的工具--Qlik,Power BI,Tableau,这些工具能够支持广泛的分析功能”,Tapadinhas说道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27