
都在说区块链3.0,最终谁会成为引领者
当很多人还没弄清楚什么是区块链时,已经有专家提出区块链3.0的概念了。一波小白们被刷新得云里雾里,搞不明白区块链3.0解决了什么问题,靠什么来赚钱,也不知道谁会成为引领者。小姐姐想说这些都不重要,重要的是大家懂得CyberVein是区块链3.0的代表就好了(偷笑),开个玩笑,还是来点干货吧~~
区块链1.0,数字货币时代,让交易变得可信
以比特币为代表的虚拟货币,给我们勾勒了一个理想的场景——全球统一货币。基本理念是这样的:比特币总量稀缺,获取成本越来越高,并且不能伪造,符合天然货币的定义,就像现在的黄金。但是虚拟货币去中心化地自由流通,匿名交易这些特点使得它难以监管,发展的阻力重重。
区块链2.0,智能合约时代,让代码变得可信
以太坊为代表的智能合约平台将区块链推进到2.0时代,2.0时代是对金融领域更广泛的场景和流程进行优化的应用。比方说,A想要买B的房子,跟B说了买房的想法后,B告诉A说,房子还在租赁阶段,租客还有两个月的租期,因此无法立即交易。但两个月之后,A会有事在国外,没办法和B见面办理房屋所有权的转让手续。他们商量之后决定在以太坊上建立一个关于房产转让的智能合约,规定:两个月后,租客的租约合同履行完成后,A把房子的钱打到B所属的钱包中,B的房屋所有权便立即转让于A的名下。这里的智能合约自动执行了一个关于房屋买卖的合同。与1.0的比特币不同,以太坊更多地被传播为是一种二次开发的“平台”,有意弱化“货币”定位,从而可能受到更小的政府阻力。
区块链3.0,价值服务时代,让数据变得可信
区块链3.0将和互联网一样,成为基础设施,应用到更广阔的领域,覆盖人们的日常生活。最明显特点是不再依靠某个第三人或机构获得信任或建立信用,还有节约人力和时间成本,提升效率。还将实现信息的共享,应用在金融、司法、医疗、物流、房产、艺术、收藏等各种领域。
区块链1.0让转账交易变得可信,2.0让编程代码变得可信,那么处在3.0时代的CyberVein就是要让数据变得可信,变得更有价值,从而引领这个时代!
在日常应用中,我们的数据经常被无偿利用,甚至埋下各种坑:比如当我们用手机或者接受某种服务的时候,各种应用都需要点击允许或者同意,收集我们的公开信息、头像、好友、位置等等,如果拒绝,我们就接受不了这种服务,如果这个服务是刚需,我们必须牺牲个人信息。再比如当我们打开电商平台,都会弹出来各种“精准推送”,但这可能是精准“杀熟”。网络营销通过数据能分析出我们个人的喜好、需求以及需求的欲望,还有财力、对价格的敏感性,甚至通过这些分析针对不同用户标注产品的不同价格。
除了我们的数据价值被机构无偿利用、被薅羊毛,对于数据的不信任感又导致了数据孤岛,数据共享没有形成一个共识。
这就是目前存在的一个悖论:大数据无所不能,但是我们却不知道如何让数据变得可信,产生更大的价值!CyberVein的设计理念和商业应用就是通过区块链技术来解决这个悖论。
第一,CVT代币的实际经济价值和应用场景让无偿被贡献数据变得主动且有偿。举个例子,在一个实验项目中可能需要多个实验室共同完成,每个实验室都可以把有用的实验数据共享在同一个数据库中,并制定贡献数据者可获取Token的数量,而数据使用者要支付Token,数据使用者所得的分析结果又能重新被共享来获得Token。在这个过程中,贡献数据的人遵循市场行为获得了相应的“报酬”,其积极性自然就会有所提高,主动加入到数据共享的生态中来。再加上共享的数据本身也会“优胜劣汰”,贡献真实数据的一方形成良性循环,数据被信任的程度也会与日俱增,而CVT充当的“燃料”则保障了整个生态的有序运行。
第二,开发自己的编程语言Vein和虚拟机CVVW,用区块链的思维来做数据库,确保数据的真实、可溯源和不可篡改。CyberVein完全打破原有的数据库构造,把原来对于数据库的操作流转变为区块链中的一条交易,再用原本只用于传统操作系统的虚拟机把这些交易跑成数据库。这样一来,数据库就具备了区块链的特点:真实、可溯源和不可篡改。现已有8家来⾃全球各地的⼤数据应⽤机构、银⾏、医疗机构提出合作意向,并希望能够将数据库搭建在CyberVein的公链上,以确保其安全性和公平性。
引领区块链3.0,让数据变得可信,为学术研究和实验室数据、智慧城市、大数据分析、DNA序列、供应链、数据流网络、人工智能等行业和领域带来更多价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11