
十分钟搞定PCA主成分分析
在数据建模当中我们经常会听到一个词叫做降维,首先咱们先来唠一唠数据为啥要降维呢?最主要的原因还是在于一方面使得我们需要计算的量更少啦,想象一下一个100维的数据和一个10维数据计算的速度肯定是不一样的,另一方面如果我们的数据中有很无关特征,这些对结果看起来没什么促进的作用,那我们就干脆把有价值的拿出来,因为他们才是决定模型的关键!
第一个强调的关键点:PCA是一种无监督算法,也就是我们不需要标签也能对数据做降维,这就使得其应用范围更加广泛了。那么PCA的核心思想是什么呢?这里我们提到了方差,咱们可以想象一下,如果一群人都堆叠在一起,我们想区分他们是不是比较困难,但是如果这群人站在马路两侧,我们就可以很清晰的判断出来应该这是两伙人。所以基于方差我们可以做的就是让方差来去判断咱们数据的拥挤程度,在这里我们认为方差大的应该辨识度更高一些,因为分的比较开(一条马路给隔开啦)。但是PCA也有一个问题,原来的数据中比如包括了年龄,性别,身高等指标降维后的数据既然维度变小了,那么每一维都是什么含义呢?这个就很难解释了,所以PCA本质来说是无法解释降维后的数据的物理含义,换句话说就是降维完啦计算机能更好的认识这些数据,但是咱们就很难理解了。
在我们深入到PCA原理之前,先来解释一下什么叫基,把这个搞清楚之后就好理解了,大家一般所认识的坐标系一般都是X,Y轴。
就像我们图上面的,我说有一个向量(3,2),但是为什么这个向量是这样的表示呢?因为它在我们的做标系中,如果我把坐标系换了,它就不是(3,2)了。作为基,首先的一个前提就是要相互垂直,或者说内积为0,因为X和Y它们表达的分别是两种指标,我们不希望它们之间内部存在任何联系,所以必须让他们内积为0,这样就是各自独立的啦!
那么对我们坐标来说能否进行变换呢?肯定是可以的,比如我现在把(3,2)变换到另外一组基中,它的表达方式就不一样啦!这回咱们应该发现了这样一个事了吧,所谓的降维就是要把我们的数据投影到最合适的基中,那下面我们的目标就是寻找最好的基!
咱这之前,还是得先来了解下另外一个知识点,叫做协方差,刚才我们已经有了目标就是寻找一个基,可以使得我们数据投影过去后方差能够越大越好!这个是我们的前提,但是只满足这一点就够了嘛?还不可以,因为我们还需要保证基的前提就是相互垂直,这就可以用协方差来进行表示啦,如果两个变量他们之间是相互独立的那么它们的协方差就必定为0,这就是我们的第二点要求啦,数据投影到的新基,其各个维度协方差都必须为0。(上图中假定数据各个维度均值为0)
终于到啦要揭开谜底的时候啦!我们恰好遇到了一个东西叫做协方差矩阵,在公式中只需要对数据X进行变换就可以得到的。观察一下协方差矩阵,恰好发现了这样一个事,主对角线不就是我们的方差嘛(假设均值为0),非对角线上的元素又恰好是协方差。按照咱们之前的两点约定,我们只需要让方差越大越好,并且协方差等于0不就可以啦嘛!
怎么做上面的那件事呢?这就是我们的目标了。让非对角线全为0这就需要对矩阵进行对角化啦,按照我们上面的定理,我们可以完成对角化操作,对我们所得的协方差矩阵求解其特征值与特征向量不就OK啦嘛。接下来按照特征值的大小进行排列,如果你想把数据降到3维,那就取前3个特征值所对应的特征向量就可以啦!
全部的过程就在这里啦,其实只需要得到协方差矩阵,然后对角化,将得到的特征向量进行选择就得到我们要投影到的基啦!数据降维操作就这么愉快的搞定啦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25