京公网安备 11010802034615号
经营许可证编号:京B2-20210330
十分钟搞定PCA主成分分析
在数据建模当中我们经常会听到一个词叫做降维,首先咱们先来唠一唠数据为啥要降维呢?最主要的原因还是在于一方面使得我们需要计算的量更少啦,想象一下一个100维的数据和一个10维数据计算的速度肯定是不一样的,另一方面如果我们的数据中有很无关特征,这些对结果看起来没什么促进的作用,那我们就干脆把有价值的拿出来,因为他们才是决定模型的关键!
第一个强调的关键点:PCA是一种无监督算法,也就是我们不需要标签也能对数据做降维,这就使得其应用范围更加广泛了。那么PCA的核心思想是什么呢?这里我们提到了方差,咱们可以想象一下,如果一群人都堆叠在一起,我们想区分他们是不是比较困难,但是如果这群人站在马路两侧,我们就可以很清晰的判断出来应该这是两伙人。所以基于方差我们可以做的就是让方差来去判断咱们数据的拥挤程度,在这里我们认为方差大的应该辨识度更高一些,因为分的比较开(一条马路给隔开啦)。但是PCA也有一个问题,原来的数据中比如包括了年龄,性别,身高等指标降维后的数据既然维度变小了,那么每一维都是什么含义呢?这个就很难解释了,所以PCA本质来说是无法解释降维后的数据的物理含义,换句话说就是降维完啦计算机能更好的认识这些数据,但是咱们就很难理解了。
在我们深入到PCA原理之前,先来解释一下什么叫基,把这个搞清楚之后就好理解了,大家一般所认识的坐标系一般都是X,Y轴。
就像我们图上面的,我说有一个向量(3,2),但是为什么这个向量是这样的表示呢?因为它在我们的做标系中,如果我把坐标系换了,它就不是(3,2)了。作为基,首先的一个前提就是要相互垂直,或者说内积为0,因为X和Y它们表达的分别是两种指标,我们不希望它们之间内部存在任何联系,所以必须让他们内积为0,这样就是各自独立的啦!
那么对我们坐标来说能否进行变换呢?肯定是可以的,比如我现在把(3,2)变换到另外一组基中,它的表达方式就不一样啦!这回咱们应该发现了这样一个事了吧,所谓的降维就是要把我们的数据投影到最合适的基中,那下面我们的目标就是寻找最好的基!
咱这之前,还是得先来了解下另外一个知识点,叫做协方差,刚才我们已经有了目标就是寻找一个基,可以使得我们数据投影过去后方差能够越大越好!这个是我们的前提,但是只满足这一点就够了嘛?还不可以,因为我们还需要保证基的前提就是相互垂直,这就可以用协方差来进行表示啦,如果两个变量他们之间是相互独立的那么它们的协方差就必定为0,这就是我们的第二点要求啦,数据投影到的新基,其各个维度协方差都必须为0。(上图中假定数据各个维度均值为0)
终于到啦要揭开谜底的时候啦!我们恰好遇到了一个东西叫做协方差矩阵,在公式中只需要对数据X进行变换就可以得到的。观察一下协方差矩阵,恰好发现了这样一个事,主对角线不就是我们的方差嘛(假设均值为0),非对角线上的元素又恰好是协方差。按照咱们之前的两点约定,我们只需要让方差越大越好,并且协方差等于0不就可以啦嘛!
怎么做上面的那件事呢?这就是我们的目标了。让非对角线全为0这就需要对矩阵进行对角化啦,按照我们上面的定理,我们可以完成对角化操作,对我们所得的协方差矩阵求解其特征值与特征向量不就OK啦嘛。接下来按照特征值的大小进行排列,如果你想把数据降到3维,那就取前3个特征值所对应的特征向量就可以啦!
全部的过程就在这里啦,其实只需要得到协方差矩阵,然后对角化,将得到的特征向量进行选择就得到我们要投影到的基啦!数据降维操作就这么愉快的搞定啦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27