京公网安备 11010802034615号
经营许可证编号:京B2-20210330
十分钟搞定PCA主成分分析
在数据建模当中我们经常会听到一个词叫做降维,首先咱们先来唠一唠数据为啥要降维呢?最主要的原因还是在于一方面使得我们需要计算的量更少啦,想象一下一个100维的数据和一个10维数据计算的速度肯定是不一样的,另一方面如果我们的数据中有很无关特征,这些对结果看起来没什么促进的作用,那我们就干脆把有价值的拿出来,因为他们才是决定模型的关键!
第一个强调的关键点:PCA是一种无监督算法,也就是我们不需要标签也能对数据做降维,这就使得其应用范围更加广泛了。那么PCA的核心思想是什么呢?这里我们提到了方差,咱们可以想象一下,如果一群人都堆叠在一起,我们想区分他们是不是比较困难,但是如果这群人站在马路两侧,我们就可以很清晰的判断出来应该这是两伙人。所以基于方差我们可以做的就是让方差来去判断咱们数据的拥挤程度,在这里我们认为方差大的应该辨识度更高一些,因为分的比较开(一条马路给隔开啦)。但是PCA也有一个问题,原来的数据中比如包括了年龄,性别,身高等指标降维后的数据既然维度变小了,那么每一维都是什么含义呢?这个就很难解释了,所以PCA本质来说是无法解释降维后的数据的物理含义,换句话说就是降维完啦计算机能更好的认识这些数据,但是咱们就很难理解了。
在我们深入到PCA原理之前,先来解释一下什么叫基,把这个搞清楚之后就好理解了,大家一般所认识的坐标系一般都是X,Y轴。
就像我们图上面的,我说有一个向量(3,2),但是为什么这个向量是这样的表示呢?因为它在我们的做标系中,如果我把坐标系换了,它就不是(3,2)了。作为基,首先的一个前提就是要相互垂直,或者说内积为0,因为X和Y它们表达的分别是两种指标,我们不希望它们之间内部存在任何联系,所以必须让他们内积为0,这样就是各自独立的啦!
那么对我们坐标来说能否进行变换呢?肯定是可以的,比如我现在把(3,2)变换到另外一组基中,它的表达方式就不一样啦!这回咱们应该发现了这样一个事了吧,所谓的降维就是要把我们的数据投影到最合适的基中,那下面我们的目标就是寻找最好的基!
咱这之前,还是得先来了解下另外一个知识点,叫做协方差,刚才我们已经有了目标就是寻找一个基,可以使得我们数据投影过去后方差能够越大越好!这个是我们的前提,但是只满足这一点就够了嘛?还不可以,因为我们还需要保证基的前提就是相互垂直,这就可以用协方差来进行表示啦,如果两个变量他们之间是相互独立的那么它们的协方差就必定为0,这就是我们的第二点要求啦,数据投影到的新基,其各个维度协方差都必须为0。(上图中假定数据各个维度均值为0)
终于到啦要揭开谜底的时候啦!我们恰好遇到了一个东西叫做协方差矩阵,在公式中只需要对数据X进行变换就可以得到的。观察一下协方差矩阵,恰好发现了这样一个事,主对角线不就是我们的方差嘛(假设均值为0),非对角线上的元素又恰好是协方差。按照咱们之前的两点约定,我们只需要让方差越大越好,并且协方差等于0不就可以啦嘛!
怎么做上面的那件事呢?这就是我们的目标了。让非对角线全为0这就需要对矩阵进行对角化啦,按照我们上面的定理,我们可以完成对角化操作,对我们所得的协方差矩阵求解其特征值与特征向量不就OK啦嘛。接下来按照特征值的大小进行排列,如果你想把数据降到3维,那就取前3个特征值所对应的特征向量就可以啦!
全部的过程就在这里啦,其实只需要得到协方差矩阵,然后对角化,将得到的特征向量进行选择就得到我们要投影到的基啦!数据降维操作就这么愉快的搞定啦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12