
最近在接触kaggle的竞赛示例,练习了一下,感觉受益匪浅。同时,心中也有个问题。拿到数据之后第一件事是什么?分析数据的情况?怎么分析?分析之后如何去处理数据呢?等等一些数据分析的工作。其中,大家都可能非常清楚条形图、直方图、散点图和曲线图的用处,但是箱型图呢?(或者称为盒须图)。
他的意义在哪里呢?在python中又是如何实现的呢?箱型图:从字面上理解就是箱子的图,如下图:
箱型图有5个参数:
下边缘(Q1),表示最小值;
下四分位数(Q2),又称“第一四分位数”,等于该样本中所有数值由小到大排列后第25%的数字;
中位数(Q3),又称“第二四分位数”等于该样本中所有数值由小到大排列后第50%的数字;
上四分位数(Q4),又称“第三四分位数”等于该样本中所有数值由小到大排列后第75%的数字;
上边缘(Q5),表述最大值。
第三四分位数与第一四分位数的差距又称四分位间距。
那为什么要引入箱形图呢?我们来进行分析:
1.为了反映原始数据的分布情况,比如数据的聚散情况和偏态。看看《统计学》这本书的插图
从图中我们可以直观地看出,箱形图的中位数和上四分位数的间距比较窄的话,对应曲线图,这个间距内的数据比较集中,还有就是箱形图的上(下)边缘比较长的话,对应曲线图,尾巴就比较长。
2.箱型图有个功能就是可以检测这组数据是否存在异常值。异常值在哪里呢?就是在上边缘和下边缘的范围之外。(这个我也不太懂,总感觉和正态分布有一腿)
3.可以直观地比较多组数据的情况。还是《统计学》中的示例。
多组成绩的箱形图如下:
从这图我们可以很直观地看出以下信息:
1.各科成绩中,英语和西方经济学的平均成绩比较高,而统计学和基础会计学的平均成绩比较低。(用中位数来衡量整体情况比较稳定)
2.英语、市场营销学、西方经济学、计算机应用基础和财务管理成绩分布比较集中,因为箱子比较短。而经济数学、基础会计学和统计学成绩比较分散,我们可以对照考试成绩数据看看也可以证实。
3.从各个箱形图的中位数和上下四位数的间距也可以看出,英语和市场营销学的成绩分布是非常的对称,而统计学呢?非常的不平衡,大部分数据都分布在70到85(中位数到上四分位数)分以上。同样,也可以从成绩单里的数据证实
4.在计算机应用基础对应的箱形图出现了个异常点,我们回去看看成绩单,计算机那一栏,出现了个计算机大牛(真希望是我),考了95分,比第二名多了10分。而其他同学的成绩整体在80分左右。
5。其实我们也可以从中得知,用平均值去衡量整体的情况有时很不合理,用中位数比较稳定,因为中位数不太会收到极值的影响,而平均值则受极值的影响很大。
那么在python怎么去画箱型图呢?
本人用的是python 3,anaconda 平台。主要的模块有matplotlib,pandas,numpy
#首先导入基本的绘图包
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
#添加成绩表
plt.style.use("ggplot")
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['font.sans-serif']=['SimHei']
#新建一个空的DataFrame
df=pd.DataFrame()
#添加成绩单,最后显示成绩单表格
df["英语"]=[76,90,97,71,70,93,86,83,78,85,81]
df["经济数学"]=[65,95,51,74,78,63,91,82,75,71,55]
df["西方经济学"]=[93,81,76,88,66,79,83,92,78,86,78]
df["计算机应用基础"]=[85,78,81,95,70,67,82,72,80,81,77]
df
#用matplotlib来画出箱型图
plt.boxplot(x=df.values,labels=df.columns,whis=1.5)
plt.show()
#用pandas自带的画图工具更快
df.boxplot()
plt.show()
好了!今天的箱形图就总结这里了。下次记得拿到数据的时候,要记得分析数据的分布以及数据间的关系哦,尤其是用可视化的手段去分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29