
准确真实数据决定信息化价值
企业信息化可以实现数据的全局共享,前提是必须在规范化的数据基础上运行。对此有些企业提出了建设数据中心的思路,高度集中管理企业数据资源。从而使企业在实施信息化建设时,需要花费大量时间准备基础数据,然而大部分企业对于信息的收集和整理还存在不足,缺乏科学的数据标准化体系。基础数据的缺乏、不准确、不合要求也使得企业失去了实施信息化应用的前提条件。企业信息化应用系统只有在对合乎要求的数据进行处理的基础上,才能提供企业所需的管理数据供决策参考。
三分技术,七分管理,十二分数据
企业信息化建设已经有20多年的时间,起步早的企业已经实现了CAD、CAPP、CAE、PDM、ERP、PLM等信息化系统的建设,建立了大量的数据库,由于早期信息化建设都是从局部应用开始的,缺乏系统的整体规划。随着信息化应用的不断深入,相互独立的应用系统增多,形成了许多信息孤岛。中航工业金航数码公司企业信息化项目实施顾问刘西平(原陕西柴油机重工有限责任公司计算中心主任)表示,这些系统独立应用能够满足基层的应用,但从企业整体应用方面来说还存在着很多的问题,系统的集成、数据的统一、数据标准的制定等成为数据有效利用的关键。目前很多企业看到了数据的重要性,因此,针对企业信息化建设目标的需要而搭建了统一的信息系统平台并且整合和优化各系统的数据,规范数据结构。“但是也存在着不足,比如企业信息化建设注重提高管理水平、提高工作效率效果的同时而对数据深层次的利用方面做得还不够。”刘西平说,如何通过大量数据的分析为决策提供依据;如何通过数据分析为企业长期发展提供有说服力的依据;如何通过数据分析指导企业进行组织机构优化、产品创新、流程改造等这都是企业信息化应用到一定层次需要企业领导高度关注的问题。
“‘三分技术,七分管理,十二分数据’强调的就是数据的重要性。”刘西平表示,制约数据深度挖掘的因素主要有:人、数据、管理、技术。其中最重要是人的因素:高层领导重视不够;员工信息化素质低、参与度不高,抵制变革;对企业信息化的内涵认识不足。
数据因素:大部分企业对于信息的收集和整理还存在不足,很多企业缺乏科学标准化的数据体系,基础数据的缺乏、不准确、不符合要求使企业失去了实施信息化应用的前提条件。缺乏科学标准化的数据体系的及基础数据的缺乏是制约企业信息化系统数据深度挖掘的重要因素。
管理因素:我国企业信息化面临的最大问题就是管理薄弱带来的影响,缺乏战略观念和系统观念。而信息化系统以规范化、标准化业务流程为前提。流程再造思想的引入,是企业信息化管理区别于以往传统的管理信息系统的重要特征。流程再造是实施企业信息化管理的基础和前提,它从管理上理顺业务过程,从技术上提高流程的效率,在合理的业务流程基础上实现对企业整体资源的优化配置。长期缺乏先进管理理念是制约企业信息化系统数据的深度挖掘的主要因素。
技术因素:实现数据深度挖掘还要有软件和硬件技术的支持,要有较好的数据平台支持,科学的进行业务流程重组及企业资源的整合,保证企业数据资源得到很好的挖掘和利用。然而,实施企业信息化绝不仅仅是信息技术问题,更多的是管理问题。只有真正把企业信息化系统看作是一个大系统,根据本企业的实际情况,做好流程重组、基础数据准备等前提工作,从企业制度创新、技术创新、管理创新等多方面来实施,通过企业“一把手”的高度重视、全面支持、调动全员参与,才能产生最大的效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12