
数据分析第1步:学会用数字思考
学会用数字思考
无论是做项目报告,还是跟老板汇报,在描述事情的时候,我们都要慢慢练习,学会用数字思考,把这件事情用一个可以量化的数字描述出来,可以让我们的观点,更有说服力。
比如公司效益持续下滑,需要一些方案来改善现状。这件事情,在不会用数字思考的人那里,说出来是这样的
再这样下去,公司要亏钱了,我有两个建议:
1- 赶紧发布新开发的产品,用这些产品刺激销售量,提升收益
2- 还有适当的削减一部分人,节省人事费用开支
我觉得这样咱们很对就能重新盈利的。
同样的事情,在习惯用数字描述的人那里,说出来是这样的。
如果公司继续维持现状,七个月以后,公司就会陷入赤字了,不过,我细致的做了一下数据模拟,如果能够在3个月内完成以下动作,盈利还是比较乐观的:
1- 新开发的商品尽快上市,刺激产品销售量,预计可以带来10%的销量增长。
2- 对重复人力、冗余人力进行适当削减,在不影响生产的情况下,大约可以节省15%的人事费用。
综合以上估算,预计3个月后,利润能达到10亿(日元)
很明显,第2种描述的方式更有说服力。因为数字给我们一个直观的衡量依据,让我们在对比自己的价值体系后,对结果有一个更明确的期望。
/ 2 /
用户思维,分析数据结构
老板要让我们针对去年的数据,出个报告,你会怎么写?
去年整体销售状况还不错,很稳步的上升。出了几款新产品,销量也非常可观。
今年我们再多推几款新产品,争取延续去年的趋势,让销售业绩再创新高。
你觉得上面的汇报怎么样?除了一堆的好话,看不到实际的内容。
怎么把报告写到老板的心坎里去呢?一个中心思想:从用户思维出发,分析数据结构。
老板关心的是什么?今年的销售额上升了没有?成本有没有增加?新开发的产品,到底赚没赚钱?有什么成功经验,可以推广到其他产品,实现更多的盈利?
因此,在制作表格之前,我们最好,按照用户的思维,把数据结构进行拆分,梳理出对应的结构框架。
有了个框架之后,我们再对数据进行分类汇总,输出对应的结论式描述,让老板能够看到他们想要的数据,而且听的很舒服。
结论式描述非常的重要,因为它可以让我们用一句话,把老板的注意力吸引住。
比如上面的图表,用销售额增长16%,和销售量降低了40%这个两个结论,让我们快速的对当年的销售状况,有了一个直观的印象,并且想去了解这两个数据背后的故事。
千万别直接丢一个图表出来,什么都不说,这和听到电话那头说“猜猜我是谁”一样,让人感觉无聊和无知。
/ 3 /
如何分析数据结构?
很多时候,在密密麻麻的数据面前,我们曾经叫好的、收藏的那些技巧、方法,突然会变的不灵光了。如何分析数据的结构呢?先思考数据关键指标。
1- 先思考数据关键指标
我们可以通过下面几个方法,来寻找写关键指标。
1- 老板经常问你的数据。销量怎么样啊?成本有没有上升啊等等,老板关心的肯定是关键数据。
2- 每天都要重复统计的数据。销售实际、计划啊,生产数量、质量啊等等。
3- 以前的报告中传承下来的指标。很多的表格,我们都是从上一任同事那里交接过来的,很多数据都已经梳理好了,我们只需要输出的时候突出一下就好。
这些指标的根本出发点就是:梳理用户的关注点,找到创造利润的因素(价值动因)。
2- 用一个数字来说明结果
关键指标出来之后,切记不要从1月1号到12月31号,或者从产品1到产品10,把所有的数据都罗列给老板看。
而是把这些数据、按照时间或者空间进行汇总,用一个数字、一个结论来说明结果。
3- 构思数据结构的诀窍
在思考把哪些数据呈现在报告里的时候,有两个重点:
1- 先大致完成框架。
2- 尽量让数字联动。
1)先大致完成框架
意思就是一开始,不要想着把所有的项目、所有的数据都加进来。一方面,这样会耽误表格制作的进度;另一方面,数据一多,我们很容易失去耐心,数据越理越乱。
比如要整理销售数据明细,不要一股脑的,把事业部A、B、C…产品1、2、3,地区1、2、3等等都全部填进来。可以大致的写一下:产品收入、服务收入。
然后再慢慢的填写详细的数据。而且这个详细的数据,最好是另建一个工作表,这样之前的框架表格,可以作为目录,让整个Excel文档的结构,更加的清晰。
2)尽量让数字联动
就是让相关的指标、数据都联动起来。用公式,把这些数据连接起来,这样我们修改任何一个参数,最后的计算结果,都有联动发生变化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30