京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析第1步:学会用数字思考
学会用数字思考
无论是做项目报告,还是跟老板汇报,在描述事情的时候,我们都要慢慢练习,学会用数字思考,把这件事情用一个可以量化的数字描述出来,可以让我们的观点,更有说服力。
比如公司效益持续下滑,需要一些方案来改善现状。这件事情,在不会用数字思考的人那里,说出来是这样的
再这样下去,公司要亏钱了,我有两个建议:
1- 赶紧发布新开发的产品,用这些产品刺激销售量,提升收益
2- 还有适当的削减一部分人,节省人事费用开支
我觉得这样咱们很对就能重新盈利的。
同样的事情,在习惯用数字描述的人那里,说出来是这样的。
如果公司继续维持现状,七个月以后,公司就会陷入赤字了,不过,我细致的做了一下数据模拟,如果能够在3个月内完成以下动作,盈利还是比较乐观的:
1- 新开发的商品尽快上市,刺激产品销售量,预计可以带来10%的销量增长。
2- 对重复人力、冗余人力进行适当削减,在不影响生产的情况下,大约可以节省15%的人事费用。
综合以上估算,预计3个月后,利润能达到10亿(日元)
很明显,第2种描述的方式更有说服力。因为数字给我们一个直观的衡量依据,让我们在对比自己的价值体系后,对结果有一个更明确的期望。
/ 2 /
用户思维,分析数据结构
老板要让我们针对去年的数据,出个报告,你会怎么写?
去年整体销售状况还不错,很稳步的上升。出了几款新产品,销量也非常可观。
今年我们再多推几款新产品,争取延续去年的趋势,让销售业绩再创新高。
你觉得上面的汇报怎么样?除了一堆的好话,看不到实际的内容。
怎么把报告写到老板的心坎里去呢?一个中心思想:从用户思维出发,分析数据结构。
老板关心的是什么?今年的销售额上升了没有?成本有没有增加?新开发的产品,到底赚没赚钱?有什么成功经验,可以推广到其他产品,实现更多的盈利?
因此,在制作表格之前,我们最好,按照用户的思维,把数据结构进行拆分,梳理出对应的结构框架。
有了个框架之后,我们再对数据进行分类汇总,输出对应的结论式描述,让老板能够看到他们想要的数据,而且听的很舒服。
结论式描述非常的重要,因为它可以让我们用一句话,把老板的注意力吸引住。
比如上面的图表,用销售额增长16%,和销售量降低了40%这个两个结论,让我们快速的对当年的销售状况,有了一个直观的印象,并且想去了解这两个数据背后的故事。
千万别直接丢一个图表出来,什么都不说,这和听到电话那头说“猜猜我是谁”一样,让人感觉无聊和无知。
/ 3 /
如何分析数据结构?
很多时候,在密密麻麻的数据面前,我们曾经叫好的、收藏的那些技巧、方法,突然会变的不灵光了。如何分析数据的结构呢?先思考数据关键指标。
1- 先思考数据关键指标
我们可以通过下面几个方法,来寻找写关键指标。
1- 老板经常问你的数据。销量怎么样啊?成本有没有上升啊等等,老板关心的肯定是关键数据。
2- 每天都要重复统计的数据。销售实际、计划啊,生产数量、质量啊等等。
3- 以前的报告中传承下来的指标。很多的表格,我们都是从上一任同事那里交接过来的,很多数据都已经梳理好了,我们只需要输出的时候突出一下就好。
这些指标的根本出发点就是:梳理用户的关注点,找到创造利润的因素(价值动因)。
2- 用一个数字来说明结果
关键指标出来之后,切记不要从1月1号到12月31号,或者从产品1到产品10,把所有的数据都罗列给老板看。
而是把这些数据、按照时间或者空间进行汇总,用一个数字、一个结论来说明结果。
3- 构思数据结构的诀窍
在思考把哪些数据呈现在报告里的时候,有两个重点:
1- 先大致完成框架。
2- 尽量让数字联动。
1)先大致完成框架
意思就是一开始,不要想着把所有的项目、所有的数据都加进来。一方面,这样会耽误表格制作的进度;另一方面,数据一多,我们很容易失去耐心,数据越理越乱。
比如要整理销售数据明细,不要一股脑的,把事业部A、B、C…产品1、2、3,地区1、2、3等等都全部填进来。可以大致的写一下:产品收入、服务收入。
然后再慢慢的填写详细的数据。而且这个详细的数据,最好是另建一个工作表,这样之前的框架表格,可以作为目录,让整个Excel文档的结构,更加的清晰。
2)尽量让数字联动
就是让相关的指标、数据都联动起来。用公式,把这些数据连接起来,这样我们修改任何一个参数,最后的计算结果,都有联动发生变化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07