
大数据如何创造价值
数据正形成一股湍流,渗透进全球经济的各个领域。但这到底意味着什么呢?尽管很多人疑惑重重,将大数据看成是对他们隐私的一种入侵。但从好的一面来看,大数据不仅有益于私人企业,也有益于国民经济及百姓。
比如,如果美国医疗可以创造性和有效地运用大数据来驱动效率和质量,每年来自行业数据的潜在价值,估计可以超过三千亿美元;其中三分之二将体现为国民医疗开支减少8%左右。在私营行业,充分使用大数据的零售商有可能将营业利润率提高超过60%。在欧洲发达经济体中,若政府机关使用大数据,估计仅仅在改善运行效率上就可以节省超过一千亿欧元(1490亿美元),这还不包括以大数据为杠杆减少诈骗、失误和税收缺口。
如今日益先进的技术应用于各类软件,配合持续增长的马力,从数据中提取有价值信息的方式也会显著完善。用大数据在全球经济中各行业创造价值的途径很多。私人公司、政府和公共部门,都有很大的机会利用大数据来提高效率和提升价值。
数据已经成为一个生产要素
麦肯锡全球研究院估计2010年全球企业储存在磁盘上的新数据超过7艾字节,而消费者在个人电脑和笔记本等设备上储存的新数据超过6艾字节。1艾字节相当于美国国会图书馆储存信息的4000多倍。
大数据现在触及到全球经济的每个行业。像实体资产和人力资本等生产中的其他要素,大数据是诸多现代经济活动顺利开展不可或缺的部分。估计截至2009年,几乎美国经济的所有行业里,每个拥有超过1000名员工的公司至少平均储存200兆兆字节的数据(即1999年美国零售商沃尔玛仓库数据的两倍)。
近期内最有潜力通过使用大数据来创造价值的地方是那些最发达的国家。展望未来,发展中国家只要条件适当,将会有巨大潜能利用大数据。比如,亚洲已经成为个人定位数据产生的主要区域,因为那里有大量的手机在使用。2010年,中国估计有8亿多部手机在使用,超过其他国家。此外,发展中国家和地区的一些个人企业在数据使用上比平均水平要先进。而且部分组织可借助其远程存储和处理数据的能力。
在基础科技、平台、数据处理的分析能力和使用者的行为(越来越多的个体经历着数字化的生活)的演变和创新驱动下,大数据的未来发展有无限可能。
大数据如何创造价值
这里列举5个大数据广泛适用,能创造质变性的价值并影响机构的设计、组织和管理的方面。
首先,大数据能提高透明度。仅仅让相关的利益共享者尽可能简单及时地使用大数据就可以创造极大的价值。例如在公共行业,让原本孤立的部门间轻易地共享数据,就能明显减少搜索和处理时间。在制造业中,整合研发、工程和生产单位数据以实现并行工程,就能显著缩短上实时间并提高质量。
其次,让发现需求、寻求变化和提高性能的实验成为可能。当组织机构创建和储存更多数字形式的业务数据时,他们可以收集更多准确和细节的性能参数(实时或近乎实时),从产品库存到人员病假等任何事物。
再次能针对细分人口采取定制行动。大数据允许组织机构高度细分市场,专门定制产品和提供精准服务来满足各种需求。这种方式在市场营销和风险管理领域众所周知,但在其他行业可能是革命性的——比如在形成一种同等对待所有群众的道德观的公共行业。然而即使是已经使用市场细分多年的消费品和服务公司,也开始部署复杂的大数据技术来瞄准促销和广告推广。
还能用自动化算法取代或支持人类决策。复杂而巧妙的分析可以大幅度改善决策、降低风险和发觉有价值的观点。对组织来说,像这样的分析应用,从税务机构能够使用自动化风险引擎标记需进一步检查的候选人,跨越到零售商可以利用算法优化类似于自动库存微调和专柜店与在线销售实时价格响应的决策过程。在某些情况下,决策不一定是自动的,但通过使用大数据技术和科技,而非小样本的个人处理和理解电子表格来分析海量、完整的数据会增强决策。决策也许会变得不同,但一些组织已经着手通过分析来自顾客、员工,甚至嵌入在产品内的传感器中的完整数据来决策。
最后,大数据有助于革新商业模式、产品和服务。大数据能够让公司创造新产品和服务,强化现存功能,并创建全新的商业模式。制造业正在运用来自实际产品使用的数据,来改善下一代产品的发展并建立创新型售后服务。从导航到基于人们驾驶汽车的位置和方式的财险定价,实时定位数据的出现已经创造了一个基于定位服务的全新篇章。
可以预见,大数据应用将成为个体公司竞争和增长的关键基准,也将促进新一波的生产力增长和提高消费者剩余。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29