京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何创造价值
数据正形成一股湍流,渗透进全球经济的各个领域。但这到底意味着什么呢?尽管很多人疑惑重重,将大数据看成是对他们隐私的一种入侵。但从好的一面来看,大数据不仅有益于私人企业,也有益于国民经济及百姓。
比如,如果美国医疗可以创造性和有效地运用大数据来驱动效率和质量,每年来自行业数据的潜在价值,估计可以超过三千亿美元;其中三分之二将体现为国民医疗开支减少8%左右。在私营行业,充分使用大数据的零售商有可能将营业利润率提高超过60%。在欧洲发达经济体中,若政府机关使用大数据,估计仅仅在改善运行效率上就可以节省超过一千亿欧元(1490亿美元),这还不包括以大数据为杠杆减少诈骗、失误和税收缺口。
如今日益先进的技术应用于各类软件,配合持续增长的马力,从数据中提取有价值信息的方式也会显著完善。用大数据在全球经济中各行业创造价值的途径很多。私人公司、政府和公共部门,都有很大的机会利用大数据来提高效率和提升价值。
数据已经成为一个生产要素
麦肯锡全球研究院估计2010年全球企业储存在磁盘上的新数据超过7艾字节,而消费者在个人电脑和笔记本等设备上储存的新数据超过6艾字节。1艾字节相当于美国国会图书馆储存信息的4000多倍。
大数据现在触及到全球经济的每个行业。像实体资产和人力资本等生产中的其他要素,大数据是诸多现代经济活动顺利开展不可或缺的部分。估计截至2009年,几乎美国经济的所有行业里,每个拥有超过1000名员工的公司至少平均储存200兆兆字节的数据(即1999年美国零售商沃尔玛仓库数据的两倍)。
近期内最有潜力通过使用大数据来创造价值的地方是那些最发达的国家。展望未来,发展中国家只要条件适当,将会有巨大潜能利用大数据。比如,亚洲已经成为个人定位数据产生的主要区域,因为那里有大量的手机在使用。2010年,中国估计有8亿多部手机在使用,超过其他国家。此外,发展中国家和地区的一些个人企业在数据使用上比平均水平要先进。而且部分组织可借助其远程存储和处理数据的能力。
在基础科技、平台、数据处理的分析能力和使用者的行为(越来越多的个体经历着数字化的生活)的演变和创新驱动下,大数据的未来发展有无限可能。
大数据如何创造价值
这里列举5个大数据广泛适用,能创造质变性的价值并影响机构的设计、组织和管理的方面。
首先,大数据能提高透明度。仅仅让相关的利益共享者尽可能简单及时地使用大数据就可以创造极大的价值。例如在公共行业,让原本孤立的部门间轻易地共享数据,就能明显减少搜索和处理时间。在制造业中,整合研发、工程和生产单位数据以实现并行工程,就能显著缩短上实时间并提高质量。
其次,让发现需求、寻求变化和提高性能的实验成为可能。当组织机构创建和储存更多数字形式的业务数据时,他们可以收集更多准确和细节的性能参数(实时或近乎实时),从产品库存到人员病假等任何事物。
再次能针对细分人口采取定制行动。大数据允许组织机构高度细分市场,专门定制产品和提供精准服务来满足各种需求。这种方式在市场营销和风险管理领域众所周知,但在其他行业可能是革命性的——比如在形成一种同等对待所有群众的道德观的公共行业。然而即使是已经使用市场细分多年的消费品和服务公司,也开始部署复杂的大数据技术来瞄准促销和广告推广。
还能用自动化算法取代或支持人类决策。复杂而巧妙的分析可以大幅度改善决策、降低风险和发觉有价值的观点。对组织来说,像这样的分析应用,从税务机构能够使用自动化风险引擎标记需进一步检查的候选人,跨越到零售商可以利用算法优化类似于自动库存微调和专柜店与在线销售实时价格响应的决策过程。在某些情况下,决策不一定是自动的,但通过使用大数据技术和科技,而非小样本的个人处理和理解电子表格来分析海量、完整的数据会增强决策。决策也许会变得不同,但一些组织已经着手通过分析来自顾客、员工,甚至嵌入在产品内的传感器中的完整数据来决策。
最后,大数据有助于革新商业模式、产品和服务。大数据能够让公司创造新产品和服务,强化现存功能,并创建全新的商业模式。制造业正在运用来自实际产品使用的数据,来改善下一代产品的发展并建立创新型售后服务。从导航到基于人们驾驶汽车的位置和方式的财险定价,实时定位数据的出现已经创造了一个基于定位服务的全新篇章。
可以预见,大数据应用将成为个体公司竞争和增长的关键基准,也将促进新一波的生产力增长和提高消费者剩余。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11