京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈Python中chr、unichr、ord字符函数之间的对比
chr、unichr、ord在Python中都可以被用作字符类型转换,这里我们就来浅谈Python中chr、unichr、ord字符函数之间的对比,需要的朋友可以参考下
ord是unicode ordinal的缩写,即编号
chr是character的缩写,即字符
ord和chr是互相对应转换的.
但是由于chr局限于ascii,长度只有256,于是又多了个unichr.
>>c = u'康'
>>c
u'\u5eb7'
>>ord(c)
24747
>>chr(24247)
ValueError: chr() arg not in range(256)
>>unichr(24247)
u'\u5eb7'
chr()函数用一个范围在range(256)内的(就是0~255)整数作参数,返回一个对应的字符。unichr()跟它一样,只不过返回的是Unicode字符,这个从Python 2.0才加入的unichr()的参数范围依赖于你的Python是如何被编译的。如果是配置为USC2的Unicode,那么它的允许范围就是range(65536)或0x0000-0xFFFF;如果配置为UCS4,那么这个值应该是range(1114112)或0x000000-0x110000。如果提供的参数不在允许的范围内,则会报一个ValueError的异常。
ord()函数是chr()函数(对于8位的ASCII字符串)或unichr()函数(对于Unicode对象)的配对函数,它以一个字符(长度为1的字符串)作为参数,返回对应的ASCII数值,或者Unicode数值,如果所给的Unicode字符超出了你的Python定义范围,则会引发一个TypeError的异常。
>>> chr(65)
'A'
>>> ord('a')
97
>>> unichr(12345)
u'\u3039'
>>> chr(12345)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
chr(12345)
ValueError: chr() arg not in range(256)
>>> ord(u'\ufffff')
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ord(u'\ufffff')
TypeError: ord() expected a character, but string of length 2 found
>>> ord(u'\u2345')
9029
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27