
Python生成随机数组的方法小结
本文实例讲述了Python生成随机数组的方法。分享给大家供大家参考,具体如下:
研究排序问题的时候常常需要生成随机数组来验证自己排序算法的正确性和性能,今天把Python生成随机数组的方法稍作总结,以备以后查看使用。
一、使用random模块生成随机数组
python的random模块中有一些生成随机数字的方法,例如random.randint, random.random, random.uniform, random.randrange,这些函数大同小异,均是在返回指定范围内的一个整数或浮点数,下边简单解释一下这几个函数。
1、random.randint(low, hight) -> 返回一个位于[low,hight]之间的整数
该函数接受两个参数,这两个参数必须是整数(或者小数位是0的浮点数),并且第一个参数必须不大于第二个参数
>>> import random
>>> random.randint(1,10)
5
>>> random.randint(1.0, 10.0)
5
2、random.random() -> 不接受参数,返回一个[0.0, 1.0)之间的浮点数
>>> random.random()
0.9983625479554628
3、random.uniform(val1, val2) -> 接受两个数字参数,返回两个数字区间的一个浮点数,不要求val1小于等于val2
>>> random.uniform(1,5.0)
2.917249424176132
>>> random.uniform(9.9, 2)
3.4288029275359024
*4、random.randrange(start, stop, step) -> 返回以start开始,stop结束,step为步长的列表中的随机整数,同样,三个参数均为整数(或者小数位为0),若start大于stop时 ,setp必须为负数.step不能是0.*
>>> random.randrange(1, 100, 2) #返回[1,100]之间的奇数
95
>>> random.randrange(100, 1, -2) #返回[100,1]之间的偶数
46
运行效果图如下:
5、生成随机数组
下边我们用random.randint来生成一个随机数组
import random
def random_int_list(start, stop, length):
start, stop = (int(start), int(stop)) if start <= stop else (int(stop), int(start))
length = int(abs(length)) if length else 0
random_list = []
for i in range(length):
random_list.append(random.randint(start, stop))
return random_list
接下来我们就可以用这个函数来生成一个随机的整数序列了
>>> random_int_list(1,100,10)
[54, 13, 6, 89, 87, 39, 60, 2, 63, 61]
二、使用numpy.random模块来生成随机数组
1、np.random.rand 用于生成[0.0, 1.0)之间的随机浮点数, 当没有参数时,返回一个随机浮点数,当有一个参数时,返回该参数长度大小的一维随机浮点数数组,参数建议是整数型,因为未来版本的numpy可能不支持非整形参数。
import numpy as np
>>> np.random.rand(10)
array([ 0.56911206, 0.99777291, 0.18943144, 0.19387287, 0.75090637,
0.18692814, 0.69804514, 0.48808425, 0.79440667, 0.66959075])
当然该函数还可以用于生成多维数组,这里不做详述。
2、np.random.randn该函数返回一个样本,具有标准正态分布。
>>> np.random.randn(10)
array([-1.6765704 , 0.66361856, 0.04029481, 1.19965741, -0.57514593,
-0.79603968, 1.52261545, -2.17401814, 0.86671727, -1.17945975])
3、np.random.randint(low[, high, size]) 返回随机的整数,位于半开区间 [low, high)。
>>> np.random.randint(10,size=10)
array([4, 1, 4, 3, 8, 2, 8, 5, 8, 9])
4、random_integers(low[, high, size]) 返回随机的整数,位于闭区间 [low, high]。
>>> np.random.random_integers(5)
4
5、np.random.shuffle(x) 类似洗牌,打乱顺序;np.random.permutation(x)返回一个随机排列
>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
[1 7 5 2 9 4 3 6 0 8]
>>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27