
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答不出来,我在知乎和博客上查了查这个问题,发现还没有人写过比较详细和有说服力的对比和解释。那我根据以前读的书和论文,还有和与导师之间的交流,尝试着说一说这几者的区别吧,毕竟一个好的定义在未来的学习和交流中能够发挥很大的作用。同时补上数据科学和商业分析之间的关系。能力有限,如有疏漏,请包涵和指正。
导论
数据挖掘 (data mining): 有目的地从现有大数据中提取数据的模式(pattern)和模型(model)
当然,数据挖掘会使用大量机器学习的算法,但是其特定的环境和目的和机器学习不太一样。
机器学习(machine learning): 自动地从过往的经验中学习新的知识。
且机器学习目前在实践中最重要的功能便是预测结果。比如机器学习已经学习结束了,现在有一个新的数据集x,需要预测其分类,机器学习算法会根据这个新数据与学习后的“知识”相匹配(实际上,知识指的是学习后的数学模型),然后将这个数据集x分类某类C去。再比较常见的机器学习,比如amazon的推荐系统。
人工智能(AI): 一个广泛的概念,本质是用数据和模型去为现有的问题(existing problems)提供解决方法(solutions).
数据科学(data science)和商业分析(business analytics)的关系?
其实以前,我们是没有数据科学家(data scientist),和数据科学(data science)这个概念的。我们称呼做相关内容的方式更多叫商业分析(business analytics)。
接着DJ Patil和Jeff Hammerbacher在其写的《Building Data Science Teams》,将麦肯锡的“深度分析能力”称为了“数据科学家(data scientists)”。他们在文中提到:
商业分析师(business analyst)看起来太局限了,数据分析师(data anlyst)是他们的竞争者,但是我们还是觉得这个称呼太局限了。....我们认为最好的称呼应该是”数据科学家(data scientist)”,因为这些人需要同时使用数据(data)和科学(science)去创造一些新的东西。
- 专业技术(Technical expertise): 最好的数据科学家需要有关于某些科学学科的深度专业知识(deep expertise)。
- 好奇心(Curiosity): 一个优秀的数据科学家需要有挖掘潜在关系,解决问题和证明假说的强烈好奇心和渴望。
- 讲故事的能力(Storytelling): 能用数据讲一个生动的故事的能力,它能使交流更加有效。
- 聪明(Cleverness): 能够创造性地解决问题的能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29