
商务智能体系介绍—数据挖掘相关理论
信息时代的到来,使得人们在实践中积累的数据越来越多。大量信息给人们带来方便的同时也带来一大堆问题,如信息过载,难以消化;信息形式不一致,难以统一处理;信息真伪难辨等等,导致了“信息爆炸而知识缺乏”、“信息孤岛”等现象。激增的数据背后隐藏着许多重要的信息,人们希望能够对其进行更高层次的分析,发现数据中存在的关系和规则,根据现有数据预测未来的发展趋势,获得更准确全面的信息帮助管理层决策。面临着这些新问题和挑战,人们开始考虑和解决如何舍弃那些不必要的信息,从大量的数据中提取有用的信息,提高信息的利用率,数据挖掘技术此时应运而生。
数据挖掘(Data
Mining)是从大量的、不完全的、有噪声的、模糊的和随机的数据中,提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。数据挖掘是一门广义的交叉学科,它汇聚了不同领域尤其是数据库、人工智能、数理统计、可视化、并行计算等方面的知识。数据挖掘技术从一开始就是面向应用领域,它不仅是面向特定数据库的简单检索查询调用,而且,要对数据进行微观、中观乃至宏观的统计、分析、综合和推理,以指定实际问题的求解,企图发现事件间的相互关联,甚至利用已有的数据对未来的活动进行预测。
图1 数据挖掘的流程
数据挖掘的任务是从大量数据中发现知识,可分为描述性挖掘,隐藏性挖掘和预测性挖掘三类,如图2所示。描述性挖掘是刻画出数据仓库中数据的某一特性,解释发现了什么;隐藏性挖掘找出以前无法探知,隐藏于业务数据中的信息,解释为什么;预测性挖掘则是在但前数据上进行推理,做出预测,解释将会发生什么。
数据挖掘与传统的数据分析(如查询、报表、联机应用分析)的本质区别是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识数据挖掘所得到的信息应具有事先未知,有效和可实用三个特征。先前未知的信息是指该信息是预先未曾预料到的,即数据挖掘是要发现那些不能靠直觉发现的信息或知识,甚至是违背直觉的信息或知识。
图2 数据挖掘类型
数据挖掘方法有很多种,其中比较典型的有分类、关联、序列模式、聚类等,本文在后面将详细介绍其分析模式及算法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18