
Python实现PS滤镜功能之波浪特效示例
这篇文章主要介绍了Python实现PS滤镜功能之波浪特效,结合实例形式分析了Python实现PS滤镜波浪特效的原理与相关操作技巧,需要的朋友可以参考下
这里用 Python 实现 PS 滤镜的波浪特效,具体效果可以参考附录说明
import numpy as np
from skimage import img_as_float
import matplotlib.pyplot as plt
from skimage import io
import numpy.matlib
import math
file_name2='D:/Visual Effects/PS Algorithm/4.jpg'
img=io.imread(file_name2)
img = img_as_float(img)
row, col, channel = img.shape
img_out = img * 1.0
alpha = 70.0
beta = 30.0
degree = 20.0
center_x = (col-1)/2.0
center_y = (row-1)/2.0
xx = np.arange(col)
yy = np.arange(row)
x_mask = numpy.matlib.repmat (xx, row, 1)
y_mask = numpy.matlib.repmat (yy, col, 1)
y_mask = np.transpose(y_mask)
xx_dif = x_mask - center_x
yy_dif = center_y - y_mask
x = degree * np.sin(2 * math.pi * yy_dif / alpha) + xx_dif
y = degree * np.cos(2 * math.pi * xx_dif / beta) + yy_dif
x_new = x + center_x
y_new = center_y - y
int_x = np.floor (x_new)
int_x = int_x.astype(int)
int_y = np.floor (y_new)
int_y = int_y.astype(int)
for ii in range(row):
for jj in range (col):
new_xx = int_x [ii, jj]
new_yy = int_y [ii, jj]
if x_new [ii, jj] < 0 or x_new [ii, jj] > col -1 :
continue
if y_new [ii, jj] < 0 or y_new [ii, jj] > row -1 :
continue
img_out[ii, jj, :] = img[new_yy, new_xx, :]
plt.figure (1)
plt.title('www.jb51.net')
plt.imshow (img)
plt.axis('off')
plt.figure (2)
plt.title('www.jb51.net')
plt.imshow (img_out)
plt.axis('off')
plt.show()
附录:PS 滤镜——波浪 wave
%%% Wave
%%% 波浪效果
clc;
clear all;
close all;
addpath('E:\PhotoShop Algortihm\Image Processing\PS Algorithm');
I=imread('4.jpg');
Image=double(I);
% Image=0.2989 * I(:,:,1) + 0.5870 * I(:,:,2) + 0.1140 * I(:,:,3);
[row, col,channel]=size(Image);
R=floor(max(row, col)/2);
Image_new=Image;
Degree=30; % 控制扭曲的程度
Center_X=(col+1)/2;
Center_Y=(row+1)/2;
for i=1:row
for j=1:col
x0=j-Center_X;
y0=Center_Y-i;
x=Degree*sin(2*pi*y0/128)+x0;
y=Degree*cos(2*pi*x0/128)+y0;
x=x+col/2;
y=row/2-y;
if(x>1 && x<col && y<row && y>1)
x1=floor(x);
y1=floor(y);
p=x-x1;
q=y-y1;
Image_new(i,j,:)=(1-p)*(1-q)*Image(y1,x1,:)+p*(1-q)*Image(y1,x1+1,:)...
+q*(1-p)*Image(y1+1,x1,:)+p*q*Image(y1+1,x1+1,:);
end
end
end
figure, imshow(Image_new/255);
本例Python运行效果:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18