京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		R语言学习系列之本地数据获取
	任何数据分析工作之前,都得把数据先读取进来你才能进行后续的分析工作。所以本文简要介绍在R中如何对本地文件进行获取,希望可以给刚刚接触R语言的同学一点启发。
一、控制台的输入与输出
何为控制台的输入与输出呢?你可以简单的理解成在屏幕上进行操作让数据可以直接输入或输出的方法。
一般输入时采用readline()函数与scan()函数,它们的区别如下:

如上我们可以发现这两个函数的区别,readline()只能输入单个数据,可以为数值也可以为字符串,并且最后会将输入的数据转化为字符串的格式。而scan()可以输入多个数据,但只能是数值,最后会以数值型输出。
一般输出时采用print()与cat()的方法,两个方法的区别是cat()可以将内容粘合起来。如下所示:

如上可以比较,print()就是直接打印,与别的语言打印语句一致。此外,我们建立一个文件链接,文件名为output.txt,之后再用cat()向文件输出数据并且使用制表符‘/t’将内容粘合起来。最后关闭文件链接。才看本地文件存入地址。结果如下:

二、数据表的读写


我们还是使用自带的iris数据集做测试,使用write.table()写入数据,命名为iris.csv ,再使用read.table()将数据集读回来赋给变量data。
在读数据时有两个小技巧:1、当你在读其他路径下的文件时可以采用
read.table(file.choose(),sep = ',')
这样的方法,R会自动弹出一个选择文件框供你选择。2、Windows操作系统下可以直接对需要的数据部分在Excel中复制然后在R中读取。
data <- read.table('clipboard')
注意此方法适用于小数据集,因为计算机的剪切板容量是有限的。
三、数据库的读写
有时候会出现需要读取MySQL数据库中的数据,这里提供给你一些方法与思路。具体如何去操作百度文库里面多得飞起,我就不一一介绍了(好吧,我还是懒!!!)
有两种方法:1、你可以直接将数据库中的数据写个sql语句读出来存入csv文件,再用之前的方法进行读取。2、R也提供直接能够操作数据库的包‘RODBC’。首先你要安装‘RODBC’包,之后下载MySQL ODBC 驱动,再配置ODBC。一切搞定后在R中调用‘RODBC’包,输入数据库访问参数,再写一个sql语句将你需要的数据读出来即可。
四、读取Excel文件
这里总结一下之前读取Excel文件的方法再介绍一个个人认为比较好用的包‘openxlsx’。这个包的读取速度比较快。
读取Excel文件的方法有:1、数据小时,可以使用直接复制在R中采用‘clipboard’的方法,注意此方法适用于Windows用户。2、数据大的时候,将Excel文件存为csv文件再用read.table()的方法进行读取。3、若想直接读写,可以调用‘openxlsx’包
library(openxlsx)
data <- read.xlsx(file.choose(),sheet = 1)
五、如何读取SPSS,SAS中的数据文件
当需要读取SPSS,SAS中的数据时,推荐使用‘foreign’包,其中有大量读取外部数据的函数。
library(foreign)
statadata <- read.dta('c/temp/statafile.dta')
spssdata <- read.spss('c/temp/spssfile.sav')
sasdata <- read.xport('c/temp/sasfile.xpt')
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28