京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R实现类似EXCEL中数据的透视功能:数据的行列转换
先介绍下融合和重铸能实现什么样的功能:
例子:想把表1—->>转换成为表2
表1:
表2:
R实现数据的透视功能,使用reshape2包中的melt()函数和dcast()函数。在《R语言实战》这本书中有着详细的介绍。我在这里引用了其中的一些内容。
首先是融合函数,融合顾名思义就是把原先的数据进行融化合并,具体melt()函数会融合成什么样的形式呢?
Library(reshape2)
Md=melt(mydata,id=c(“ID”,”Time”)
其中的参数id是用来唯一的确定观察值的,就行是sql中的主键一样。
其余没有纳入id的特征/属性都会被R默认为归为variable这个新生成的特征/属性中。最后一列就是对应的value。
这就是melt函数把原先的数据表融合后的形式。
把数据融合好之后,就可以进行数据的重铸了。重铸的函数式dcast()函数,d的含义在这里是dataframe的含义。
重铸成什么样式呢?
Newdata=dcast(md,formulate,fun.aggregate,fill=value)
其中formulate的形式如下:
Rowvar1+rowvr2+….=colvar1+colvar2+colvar3+…;公式的左边变量从melt中划出来用来作为重铸表的行变量,右边是确定重铸表的列变量,未在公式中的变量是当做值变量了。
Fun.aggrate函数是可选的数据整合函数,作用在重铸表的数值上面。
Fill=value ;其中fill参数是用来指定重铸后的表中缺失值使用什么数值来代替。
上面的例子的直接使用重铸就可以实现:
library(reshape2)
data <- read.csv(file = ” “,stringsAsFactors = F)
newdata <-dcast(data,用户~手机品牌)
在这里介绍一下管道函数我感觉是非常好用的在R中。因为管道函数的出现使得R中避免生成过多的变量,节省内存不说还能使得代码显得很简洁且容易理解。第二是能够避免使用过多的括号,生成复杂的函数套函数的形式。
%>%
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27