京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R实现类似EXCEL中数据的透视功能:数据的行列转换
先介绍下融合和重铸能实现什么样的功能:
例子:想把表1—->>转换成为表2
表1:
表2:
R实现数据的透视功能,使用reshape2包中的melt()函数和dcast()函数。在《R语言实战》这本书中有着详细的介绍。我在这里引用了其中的一些内容。
首先是融合函数,融合顾名思义就是把原先的数据进行融化合并,具体melt()函数会融合成什么样的形式呢?
Library(reshape2)
Md=melt(mydata,id=c(“ID”,”Time”)
其中的参数id是用来唯一的确定观察值的,就行是sql中的主键一样。
其余没有纳入id的特征/属性都会被R默认为归为variable这个新生成的特征/属性中。最后一列就是对应的value。
这就是melt函数把原先的数据表融合后的形式。
把数据融合好之后,就可以进行数据的重铸了。重铸的函数式dcast()函数,d的含义在这里是dataframe的含义。
重铸成什么样式呢?
Newdata=dcast(md,formulate,fun.aggregate,fill=value)
其中formulate的形式如下:
Rowvar1+rowvr2+….=colvar1+colvar2+colvar3+…;公式的左边变量从melt中划出来用来作为重铸表的行变量,右边是确定重铸表的列变量,未在公式中的变量是当做值变量了。
Fun.aggrate函数是可选的数据整合函数,作用在重铸表的数值上面。
Fill=value ;其中fill参数是用来指定重铸后的表中缺失值使用什么数值来代替。
上面的例子的直接使用重铸就可以实现:
library(reshape2)
data <- read.csv(file = ” “,stringsAsFactors = F)
newdata <-dcast(data,用户~手机品牌)
在这里介绍一下管道函数我感觉是非常好用的在R中。因为管道函数的出现使得R中避免生成过多的变量,节省内存不说还能使得代码显得很简洁且容易理解。第二是能够避免使用过多的括号,生成复杂的函数套函数的形式。
%>%
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12