京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS操作:多个独立样本的非参数检验及两两比较
一、问题与数据
某研究者想探讨不同体力活动的人,应对职场压力的能力是否不同。因此,研究招募了31名研究对象,测量了他们每周进行体力活动的时间(分钟),以及应对职场压力的能力。
根据体力活动的时间长短,研究对象被分为4组:久坐组、低、中、高体力活动组(变量名为group)。利用Likert量表调查的总得分(CWWS得分)来评估应对职场压力的能力,分数越高,表明应对职场压力的能力越强(变量名为coping_stress)。部分数据如下图。
二、对问题的分析
研究者想知道不同体力活动组之间CWWS得分是否不同,可以使用Kruskal-Wallis H检验。Kruskal-Wallis H检验(有时也叫做对秩次的单因素方差分析)是基于秩次的非参数检验方法,用于检验多组间(也可以是两组)连续或有序变量是否存在差异。
使用Kruskal-Wallis H test进行分析时,需要考虑以下3个假设。
假设1:有一个因变量,且因变量为连续变量或等级变量。
假设2:存在多个分组(≥2个)。
假设3:具有相互独立的观测值,如本研究中各位研究对象的信息都是独立的,不存在相互干扰作用。
三、SPSS操作
1. Kruskal-Wallis H检验
在主界面点击Analyze→Nonparametric Tests→Independent Samples,出现Nonparametric Tests: Two or More Independent Samples对话框,默认选择Automatically compare distributions across groups。
点击Fields,在Fields下方选择Use custom field assignments,将变量coping_stress放入Test Fields框中,将变量group放入Groups框中。
点击Settings→Customize tests,在Compare Median Difference to Hypothesized区域选择Kruskal-Wallis 1-way ANOVA (k samples),如下图。本步骤也可不操作,默认即可。因为我们选择了Automatically compare distributions across groups,且有3个分组, SPSS会默认选择Kruskal-Wallis 1-way ANOVA (k samples)。
点击Run,输出结果。
2. 对数据分布的了解
Kruskal-Wallis H 检验,其原理是将原始数据排序后分配秩次,再对秩次做假设检验。因此,统计描述只能描述各组数据的“平均秩次”,假设检验的结果也只能表述为“各组数据分布的差异有/无统计学意义”。然而,“平均秩次”并不能充分反映各组数据的集中趋势。
我们知道,对于非正态分布数据,描述其集中趋势的较好指标是中位数(相对应的,对于正态分布数据,描述其集中趋势的较好指标是均数)。因此,在做Kruskal-Wallis H 检验(以及Mann-Whitney U检验/Wilcoxon秩和检验)前,需要首先对原始数据的分布形态做一个了解。
假设某研究关注不同教育程度(高中及以下、本科、硕士及以上)研究对象的年均收入,则年均收入的分布可能有2种情况(如下图)。左侧的图表示各组年均收入的分布形状一致(分布形状一致代表变异一致),而右侧的图表示各组年均收入的分布形状不一致。
因此,在做Kruskal-Wallis H 检验(以及Mann-Whitney U检验/Wilcoxon秩和检验)前,需要画直方图对各组数据的分布形状做一个了解(本例的模拟数据量较少,因此省去画直方图的操作。实际研究中,应当首先做直方图)。
如果实际研究中,各组因变量的分布形状基本一致,则需要计算各组因变量的中位数,以便统计描述时汇报。如果各组因变量的分布形状不一致,则在统计描述时不必汇报。
3. 计算中位数
Kruskal-Wallis H 检验并不直接给出中位数的具体数值,因此需要单独计算中位数。在主界面栏中点击Analyze→Compare Means,在Means对话框中,将coping_stress选入Dependent List框中,将group选入Independent List框中。
点击Options,出现Means: Options对话框。将Cell Statistics框中的“Mean”和“Standard Deviation”选回Statistics框中,并将“Median” 从Statistics框中选入Cell Statistics框中。点击Continue→OK。
四、结果解释
1. Kruskal-Wallis H检验
Kruskal-Wallis H检验的最终结果如下图。
双击Hypothesis Test Summary,启动Model Viewer窗口。Model Viewer窗口右上方的“Independent-Samples Kruskal-Wallis Test”箱式图反映了各组CWWS评分的中位数和分布情况。
Model Viewer窗口右下方Asymptotic Sig. (2-sided test)对应的P值与Hypothesis Test Summary中的P值一样。如下图。
基于以上结果,可以认为各组CWWS评分的分布不全相同,差异具有统计学意义(H = 14.468,P=0.002)。
2. 两两比较
虽然得到了各组CWWS评分的分布不全相同的结论,但我们仍然不清楚到底是哪两组之间不同,因此需要进一步两两比较。
点击Model Viewer右侧下方的View处,选择“Pairwise Comparisons”选项。
点击后,Pairwise Comparisons的右侧视图出现两两比较的结果。
在Pairwise Comparisons of Physical Activity Level图中,圆点旁边的数值代表该组的平均秩次。连接线代表两两比较的结果,黑色连接线代表两组间差异无统计学意义,橘黄色连接线代表两组差异具有统计学意义。
表格给出了更多的信息:比较的组别、统计量、标准误、标准化的统计量(=统计量/标准误)、P值和调整后的P值。
由于是事后的两两比较(Post hoc test),因此需要调整显著性水平(调整α水平),作为判断两两比较的显著性水平。依据Bonferroni法,调整α水平=原α水平÷比较次数。例如本研究共比较了6次,调整α水平=0.05÷6=0.0083。因此,最终得到的P值(上图中Sig.一列),需要和0.0083比较,小于0.0083则认为差异有统计学意义。
另外,SPSS也提供了调整后P值(上图中Adj. Sig.一列),其思想还是采用Bonferroni法调整α水平。该列是将原始P值(图中Sig.一列)乘以比较次数得到,因此可以直接和0.05比较,小于0.05则认为差异有统计学意义。
值得注意的是,中度体力活动和高度体力活动比较时(最后一行),原始P=0.829,而调整后P=1(不等于0.829的6倍)。这是因为,P的最大值为1。
以上结果可以描述为:采用Bonferroni法校正显著性水平的事后两两比较发现,CWWS评分的分布在久坐组和中度体力活动组(调整后P=0.008)、久坐组和高体力活动组(调整后P=0.005)的差异有统计学意义,其它组之间的差异无统计学意义。
3. 描述中位数
假设本研究中,各组CWWS评分的分布形状基本一致,则报告结果时还应该报告各组CWWS评分的中位数。Report表格给出了中位数及样本数。
五、撰写结论
1. 各组CWWS评分的分布形状基本一致时
比较不同体力活动组中CWWS评分的分布差异,采用Kruskal-Wallis H检验。根据直方图判断各组中CWWS评分分布的形状基本一致。各组CWWS评分的分布不全相同,差异具有统计学意义(H= 14.468, P=0.002)。
久坐组CWWS评分中位数为4.12 (n=7),低体力活动组CWWS评分中位数为5.50 (n=9),中度体力活动组CWWS评分中位数为7.10 (n=8),高体力活动组CWWS评分中位数为7.47 (n=7),总的CWWS评分中位数为5.97 (n=31)。
采用Bonferroni法校正显著性水平的事后两两比较发现,CWWS评分的分布在久坐组和中度体力活动组(调整后P=0.008)、久坐组和高体力活动组(调整后P=0.005)的差异有统计学意义,其它组之间的差异无统计学意义。
2. 各组CWWS评分的分布形状不一致时
比较不同体力活动组中CWWS评分的分布差异,采用Kruskal-Wallis H检验。根据直方图判断各组中CWWS评分分布的形状不一致。各组CWWS评分的分布不全相同,差异具有统计学意义(H= 14.468, P=0.002)。
久坐组CWWS评分平均秩次为6.00 (n=7),低体力活动组CWWS评分平均秩次为14.44 (n=9),中度体力活动组CWWS评分平均秩次为21.13 (n=8),高体力活动组CWWS评分平均秩次为22.14 (n=7)。
采用Bonferroni法校正显著性水平的事后两两比较发现,CWWS评分的分布在久坐组和中度体力活动组 (调整后P=0.008)、久坐组和高体力活动组 (调整后P=0.005) 的差异有统计学意义,其它组之间的差异无统计学意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06