
SPSS操作:多个独立样本的非参数检验及两两比较
一、问题与数据
某研究者想探讨不同体力活动的人,应对职场压力的能力是否不同。因此,研究招募了31名研究对象,测量了他们每周进行体力活动的时间(分钟),以及应对职场压力的能力。
根据体力活动的时间长短,研究对象被分为4组:久坐组、低、中、高体力活动组(变量名为group)。利用Likert量表调查的总得分(CWWS得分)来评估应对职场压力的能力,分数越高,表明应对职场压力的能力越强(变量名为coping_stress)。部分数据如下图。
二、对问题的分析
研究者想知道不同体力活动组之间CWWS得分是否不同,可以使用Kruskal-Wallis H检验。Kruskal-Wallis H检验(有时也叫做对秩次的单因素方差分析)是基于秩次的非参数检验方法,用于检验多组间(也可以是两组)连续或有序变量是否存在差异。
使用Kruskal-Wallis H test进行分析时,需要考虑以下3个假设。
假设1:有一个因变量,且因变量为连续变量或等级变量。
假设2:存在多个分组(≥2个)。
假设3:具有相互独立的观测值,如本研究中各位研究对象的信息都是独立的,不存在相互干扰作用。
三、SPSS操作
1. Kruskal-Wallis H检验
在主界面点击Analyze→Nonparametric Tests→Independent Samples,出现Nonparametric Tests: Two or More Independent Samples对话框,默认选择Automatically compare distributions across groups。
点击Fields,在Fields下方选择Use custom field assignments,将变量coping_stress放入Test Fields框中,将变量group放入Groups框中。
点击Settings→Customize tests,在Compare Median Difference to Hypothesized区域选择Kruskal-Wallis 1-way ANOVA (k samples),如下图。本步骤也可不操作,默认即可。因为我们选择了Automatically compare distributions across groups,且有3个分组, SPSS会默认选择Kruskal-Wallis 1-way ANOVA (k samples)。
点击Run,输出结果。
2. 对数据分布的了解
Kruskal-Wallis H 检验,其原理是将原始数据排序后分配秩次,再对秩次做假设检验。因此,统计描述只能描述各组数据的“平均秩次”,假设检验的结果也只能表述为“各组数据分布的差异有/无统计学意义”。然而,“平均秩次”并不能充分反映各组数据的集中趋势。
我们知道,对于非正态分布数据,描述其集中趋势的较好指标是中位数(相对应的,对于正态分布数据,描述其集中趋势的较好指标是均数)。因此,在做Kruskal-Wallis H 检验(以及Mann-Whitney U检验/Wilcoxon秩和检验)前,需要首先对原始数据的分布形态做一个了解。
假设某研究关注不同教育程度(高中及以下、本科、硕士及以上)研究对象的年均收入,则年均收入的分布可能有2种情况(如下图)。左侧的图表示各组年均收入的分布形状一致(分布形状一致代表变异一致),而右侧的图表示各组年均收入的分布形状不一致。
因此,在做Kruskal-Wallis H 检验(以及Mann-Whitney U检验/Wilcoxon秩和检验)前,需要画直方图对各组数据的分布形状做一个了解(本例的模拟数据量较少,因此省去画直方图的操作。实际研究中,应当首先做直方图)。
如果实际研究中,各组因变量的分布形状基本一致,则需要计算各组因变量的中位数,以便统计描述时汇报。如果各组因变量的分布形状不一致,则在统计描述时不必汇报。
3. 计算中位数
Kruskal-Wallis H 检验并不直接给出中位数的具体数值,因此需要单独计算中位数。在主界面栏中点击Analyze→Compare Means,在Means对话框中,将coping_stress选入Dependent List框中,将group选入Independent List框中。
点击Options,出现Means: Options对话框。将Cell Statistics框中的“Mean”和“Standard Deviation”选回Statistics框中,并将“Median” 从Statistics框中选入Cell Statistics框中。点击Continue→OK。
四、结果解释
1. Kruskal-Wallis H检验
Kruskal-Wallis H检验的最终结果如下图。
双击Hypothesis Test Summary,启动Model Viewer窗口。Model Viewer窗口右上方的“Independent-Samples Kruskal-Wallis Test”箱式图反映了各组CWWS评分的中位数和分布情况。
Model Viewer窗口右下方Asymptotic Sig. (2-sided test)对应的P值与Hypothesis Test Summary中的P值一样。如下图。
基于以上结果,可以认为各组CWWS评分的分布不全相同,差异具有统计学意义(H = 14.468,P=0.002)。
2. 两两比较
虽然得到了各组CWWS评分的分布不全相同的结论,但我们仍然不清楚到底是哪两组之间不同,因此需要进一步两两比较。
点击Model Viewer右侧下方的View处,选择“Pairwise Comparisons”选项。
点击后,Pairwise Comparisons的右侧视图出现两两比较的结果。
在Pairwise Comparisons of Physical Activity Level图中,圆点旁边的数值代表该组的平均秩次。连接线代表两两比较的结果,黑色连接线代表两组间差异无统计学意义,橘黄色连接线代表两组差异具有统计学意义。
表格给出了更多的信息:比较的组别、统计量、标准误、标准化的统计量(=统计量/标准误)、P值和调整后的P值。
由于是事后的两两比较(Post hoc test),因此需要调整显著性水平(调整α水平),作为判断两两比较的显著性水平。依据Bonferroni法,调整α水平=原α水平÷比较次数。例如本研究共比较了6次,调整α水平=0.05÷6=0.0083。因此,最终得到的P值(上图中Sig.一列),需要和0.0083比较,小于0.0083则认为差异有统计学意义。
另外,SPSS也提供了调整后P值(上图中Adj. Sig.一列),其思想还是采用Bonferroni法调整α水平。该列是将原始P值(图中Sig.一列)乘以比较次数得到,因此可以直接和0.05比较,小于0.05则认为差异有统计学意义。
值得注意的是,中度体力活动和高度体力活动比较时(最后一行),原始P=0.829,而调整后P=1(不等于0.829的6倍)。这是因为,P的最大值为1。
以上结果可以描述为:采用Bonferroni法校正显著性水平的事后两两比较发现,CWWS评分的分布在久坐组和中度体力活动组(调整后P=0.008)、久坐组和高体力活动组(调整后P=0.005)的差异有统计学意义,其它组之间的差异无统计学意义。
3. 描述中位数
假设本研究中,各组CWWS评分的分布形状基本一致,则报告结果时还应该报告各组CWWS评分的中位数。Report表格给出了中位数及样本数。
五、撰写结论
1. 各组CWWS评分的分布形状基本一致时
比较不同体力活动组中CWWS评分的分布差异,采用Kruskal-Wallis H检验。根据直方图判断各组中CWWS评分分布的形状基本一致。各组CWWS评分的分布不全相同,差异具有统计学意义(H= 14.468, P=0.002)。
久坐组CWWS评分中位数为4.12 (n=7),低体力活动组CWWS评分中位数为5.50 (n=9),中度体力活动组CWWS评分中位数为7.10 (n=8),高体力活动组CWWS评分中位数为7.47 (n=7),总的CWWS评分中位数为5.97 (n=31)。
采用Bonferroni法校正显著性水平的事后两两比较发现,CWWS评分的分布在久坐组和中度体力活动组(调整后P=0.008)、久坐组和高体力活动组(调整后P=0.005)的差异有统计学意义,其它组之间的差异无统计学意义。
2. 各组CWWS评分的分布形状不一致时
比较不同体力活动组中CWWS评分的分布差异,采用Kruskal-Wallis H检验。根据直方图判断各组中CWWS评分分布的形状不一致。各组CWWS评分的分布不全相同,差异具有统计学意义(H= 14.468, P=0.002)。
久坐组CWWS评分平均秩次为6.00 (n=7),低体力活动组CWWS评分平均秩次为14.44 (n=9),中度体力活动组CWWS评分平均秩次为21.13 (n=8),高体力活动组CWWS评分平均秩次为22.14 (n=7)。
采用Bonferroni法校正显著性水平的事后两两比较发现,CWWS评分的分布在久坐组和中度体力活动组 (调整后P=0.008)、久坐组和高体力活动组 (调整后P=0.005) 的差异有统计学意义,其它组之间的差异无统计学意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29