京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘的六大主要功能
数据挖掘的历史虽然较短,但从20世纪90年代以来,它的发展速度很快,加之它是多学科综合的产物,目前还没有一个完整的定义,人们提出了多种数据挖掘的定义,例如:SAS研究所(1997):“在大量相关数据基础之上进行数据探索和建立相关模型的先进方法”。Hand et al(2000):“数据挖掘就是在大型数据库中寻找有意义、有价值信息的过程”确切地说,数据挖掘(Data
Mining),又称数据库中的知识发现(Knowledge Discovery in
Database,KDD),是指从大型数据库或数据仓库中提取隐含的、未知的、非平凡的及有潜在应用价值的信息或模式,它是数据库研究中的一个很有应用价值的新领域,融合了数据库、人工智能、机器学习、统计学等多个领域的理论和技术。
数据挖掘的主要功能
数据挖掘综合了各个学科技术,有很多的功能,当前的主要功能如下:
1、数据总结:继承于数据分析中的统计分析。数据总结目的是对数据进行浓缩,给出它的紧凑描述。传统统计方法如求和值、平均值、方差值等都是有效方法。另外还可以用直方图、饼状图等图形方式表示这些值。广义上讲,多维分析也可以归入这一类。
2、分类:目的是构造一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。要构造分类器,需要有一个训练样本数据集作为输入。训练集由一组数据库记录或元组构成,每个元组是一个由有关字段(又称属性或特征)值组成的特征向量,此外,训练样本还有一个类别标记。一个具体样本的形式可表示为:(v1,v2,…,vn;c),其中vi表示字段值,c表示类别。
例如:银行部门根据以前的数据将客户分成了不同的类别,现在就可以根据这些来区分新申请贷款的客户,以采取相应的贷款方案。
3、聚类:是把整个数据库分成不同的群组。它的目的是使群与群之间差别很明显,而同一个群之间的数据尽量相似。这种方法通常用于客户细分。在开始细分之前不知道要把用户分成几类,因此通过聚类分析可以找出客户特性相似的群体,如客户消费特性相似或年龄特性相似等。在此基础上可以制定一些针对不同客户群体的营销方案。
例如:将申请人分为高度风险申请者,中度风险申请者,低度风险申请者。
4、关联分析:是寻找数据库中值的相关性。两种常用的技术是关联规则和序列模式。关联规则是寻找在同一个事件中出现的不同项的相关性;序列模式与此类似,寻找的是事件之间时间上的相关性,例如:今天银行利率的调整,明天股市的变化。
5、预测:把握分析对象发展的规律,对未来的趋势做出预见。例如:对未来经济发展的判断。
6、偏差的检测:对分析对象的少数的、极端的特例的描述,揭示内在的原因。例如:在银行的100万笔交易中有500例的欺诈行为,银行为了稳健经营,就要发现这500例的内在因素,减小以后经营的风险。
以上数据挖掘的各项功能不是独立存在的,它们在数据挖掘中互相联系,发挥作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04