
信用卡通不过?用数据分析技术,带你深度解析信用卡评分体系
随着互联网金融时代的到来,信用评分体系显得越发重要,本文就解读信用卡评分体系是如何建立的。
客户信息涉及到很多因素,因此许多因素无法在机器学习模型中进行探讨,这里收集了大部分互联网金融公司在信用卡申请时能获取到的信息。
目标
1. 使用机器学习构建信用卡评分模型,获得自变量分箱结果;
2. 并由评分模型得出最优的cutoff值,并对模型进行评价;
3. 再由新的样本集对评分卡进行测试,输出预测结果。
数据
我使用了Kaggle的两个数据集。
Kaggle数据集链接:
https://www.kaggle.com/yuzijuan/credit-card-scoring/data
环境和工具:
Rstudio,plyr,rJava,smbinning,prettyR
我首先对两个数据集进行探索性分析,剔除掉无法纳入模型的变量,例如ID,取值为空的变量,取值仅为一类的变量等;再探索配偶收入变量问题时,由于值绝大部分为0,将该变量变为二分类变量,取值为有收入与无收入;针对异常值过大的变量,采用盖帽法,用99分位点值代替极大异常值,有1分位点值代替极小异常值等等方法,数据清洗完后,再用smbinning包进行cart分箱,带入评分卡模型,获得评分卡,最后将其运用到测试集上。
开始
首先,导入必要的库和数据集,进行探索性数据分析,并剔除掉无法纳入模型的变量。
导入库
导入数据
剔除无法纳入模型的变量
由于评分卡模型一般分数越高,表示信用越好,故需要将信用好的类别得分记为1,信用不好的类别得分记为0。
为更有效分箱,获取了因子型变量集factorval和数值型变量集numericval,分别进行分箱处理。
数值型变量分箱
为更有效进行数据处理,对异常值可以进行盖帽法处理,代码如下:
以年龄数值型变量举例说明,首先查看数据分布情况,由于是因变量为二分类,自变量为数值型,用t检验来检验两分布是否有显著性差别,有显著性差别才能进行分箱,否则分箱结果无意义。
分布情况如上图所示,可以对其进行盖帽法后再t检验和分箱处理。t检验的原假设为两分类组的均值相等,结果表明原假设被拒绝,认为两分布具有显著性差别,可以进行分箱。
用的是smbinning包,这个包中采用的是CART回归树进行属性划分,数值型用函数smbinning(),由树的结果可知,划分点为19,22,32,37,46、59六个值,划分为7个属性区间。
AGE的IV值为0.2004,对AGE的WOE值画图,得到分布呈现单调趋势,表明分箱结果良好,可以纳入模型。
用AGE进行分箱的代码如下:
类推其他连续变量。通过调用numericalval可知共有7个数值型变量,由于两个数值型变量取值过于集中,后续将作为分类变量处理,故得到5个变量的IV值。
因子型变量分箱
以性别分类变量举例说明,首先对性别变量中的异常值进行处理,这种类别变量一般将异常值归为多数这类。查看分布情况可知女性的守信情况似乎比男性好一些。性别变量的WOE值区分得也很明显。
在进行分箱之前同数值型变量一样,要检验两分布是否有显著性差别,由于因变量和自变量均为分类变量,故用卡方检验。原假设为两分布之间无显著性差别,卡方检验结果表明拒绝原假设,认为两样本有显著性差别,可以进行分箱。
分类变量分箱也采用的是smbinning包,不过smbinning包中就是用原分类值进行属性划分,未对划分属性处理,分类变量用的函数是smbinning.factor(),最后得到SEX的IV值为0.0274。具体执行代码如下:
再以配偶收入举例说明,这个变量原本是数值型变量,由于取值过于集中到0,故将该变量转化为分类型变量再处理,处理方式是将取值为0的作为无收入,将取值大于0的作为有收入。
得到混淆矩阵可以看出,有收入的似乎比无收入的守信情况好一些,WOE图的区别也较为明显。
通过卡方检验也可以看出,是否有收入对信用好否有显著性影响,可以进行分箱操作。最后分箱得到IV值为0.0206。具体代码如下:
类推到其他因子型变量,计算出得到所有变量的IV值,存入creditivs中。
建立评分卡
得到所有可分箱变量的IV值,一般认为IV值大于等于0.02的对构建评分卡具有一定的帮助,故以0.02为分界点得到满足条件的变量。最后纳入评分卡模型的变量分别是年龄、工作时长(月)、个人收入、性别、婚姻状态、是否有自用手机、配偶是否有收入。
最后7个自变量的IV值的分布情况如下,可以看到年龄、婚姻状态、工作时长、是否有自用手机这几个变量的IV值较大,表明这几个变量对预测结果影响较大。
数值型分箱变量用函数smbinning.gen(),因子型变量用函数smbinning.factor.gen(),可以生成分箱后的结果,分箱后生成的新列并因变量得到data2数据集,通过逻辑回归,建立评分卡模型。通过逻辑回归结果可以看出分箱后的变量都较为显著,表示分箱结果优良。
生成评分卡是用函数smbinning.scaling(),通过调节pdo,score,odds三个参数,使得评分卡最大值与最小值位于一个较好的范围。这里评分卡的区间为(389,888)。
最后保存为新的csv文件,评分卡就做好了。具体代码如下:
评分卡展示如下,points表示为评分卡的分值。如年龄在45岁的客户,得分为166分。
最后,你总得告诉领导或者同事,到底大于等于多少时,我们认为是好客户,这时还有最后一步,就是求cutoff值,将训练数据通过函数smbinning.scoring.gen()可以得到客户的得分,由于训练数据本身有是否违约这个变量,那么cutoff值有两种选择方式,第一种基于业务发展现状,即公司是需要盈利增收,还是公司需要控制风险,然后商议讨论选择一个cutoff值。下图为客户得分与客户违约的箱体图,1表示好客户,0表示坏客户,可以看出好客户的得分值会高于坏客户的得分值。
对客户得分与客户违约做t检验,检验结果表明,两分布具备显著性差别,可以认为好客户和坏客户的得分会有显著性差别。坏客户的得分集中在578分附近,好客户得分集中于620分附近。
第二种获得cutoff值的方式就是电脑自动计算最优cutoff值,用的函数smbinning.metrics(),从输出的报告可以看出,最优cutoff值为615,这样划分的话,ROC曲线的AUC值为0.657,不算特别优良,准确率(precision)达到87.8%。
具体执行代码如下:
预测
针对新样本,我选择用Excel工具获得信用评分,使用VLOOKUP函数可以很方便地得到想要的数据,评分展示如下,选择cutoff值为615,这里认为(600,620)的客户为关注客户,信用情况中等,620分以上的客户信用情况良好,600分以下的客户信用情况堪忧。
分别用!、√、×来表示中等、优良、较差的信用情况。
结语
本案例不足之处在于:
1. 未对职业代码、商店等级代码等信息进行提炼,可能会忽略掉一些有可能对模型有影响的变量。
2. Smbinning包在数值型变量分箱这一块很强大,但是对分类变量分箱结果不太尽如人意,可以考虑其他分箱方法。
3. 可以整合更多模型,从而提高预测准确率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01