京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R语言进行复杂网络可视化
现实世界中,网络世界大量存在,铁路线路网络,航空网络,人际关系网络。复杂网络是大量真实复杂系统的拓扑关系。借助复杂网络分析,我们期望可以化繁为简,找到隐藏的拓扑关系新结构,找到节点与节点之间的模式,同时实现数据可视化展示。

复杂网络系列
我们的复杂网络个人笔记将包含以下几个部分:
• 复杂网络基础知识及网络可视化
• 复杂网络主要几种拓扑关系及应用
• 复杂网络社团挖掘
复杂网络中的基本知识点
• 节点(vertex) : 一个一个散落的点,如每个人可以是一个点,每个url是一个点。
• 边 (edge): 连接点与点直接的线;边是节点与节点之间的关系表示。
• 度(degree):某个节点的度是指与该连接相连接的其他节点的个数;
• 平均度:所有节点的度之和除以节点个数
• 节点的聚类系数:某个节点的邻集节点个数,这些节点之间的边数与这些节点之间可能存在的最大边上之比。
• 最短路径:节点之间边数最少的路径
• 平均路径:所有节点对之间的距离的平均值
• 点介数:通过该节点的最短路径的条数
• 边介数:通过该边的最短路径的条数
• 核数:反复去掉一个网络图中度数小于等于K的节点后,剩下的子图。如果一个节点存在K-核,而在K+1 -核中被去掉,则该节点的核数为K
基本的复杂网络结构
• 规则网络
• ER随机图
• 小世界网络
• BA无标度网络
复杂网络可视化
data=read.csv("test.csv",header =TRUE)
head(data)

• 基础图
library(igraph)
data_stru<-graph.data.frame(data)
plot(data_stru)

• 数据为随机生成的。
复杂网络可视化
• 根据数值改变边的大小,改变颜色,添加值
library(igraph)
data_stru<-graph.data.frame(data)
plot(data_stru,edge.width=data$freq/100,edge.color=rainbow(40),edge.arrow.size=2,edge.label=data$freq)

复杂网络可视化
• 根据节点度的不同,画出不同节点的大小
library(igraph)
data_stru<-graph.data.frame(data)
plot(data_stru,edge.width=data$freq/100,edge.color=rainbow(40),edge.arrow.size=2,edge.label=data$freq,vertex.size=degree(data_stru))

复杂网络可视化
• 根据节点度的不同,画出不同节点的颜色
library(igraph)
data_stru<-graph.data.frame(data)
plot(data_stru,edge.width=data$freq/100,edge.color=rainbow(40),edge.arrow.size=2,edge.label=data$freq,vertex.size=degree(data_stru),vertex.color=degree(data_stru))

复杂网络可视化
• 画出某个节点的N层关系
library(igraph)
data_stru<-graph.data.frame(data)
data_degree<-graph.neighborhood(data_stru,1)
plot(data_degree[[6]],edge.width=data$freq/100,edge.color=rainbow(40),edge.arrow.size=2,edge.label=data$freq,vertex.size=degree(data_stru),vertex.color=degree(data_stru))
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11