京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘、机器学习、模式识别三者的关系,可以说是一脉相承。与数据挖掘、机器学习、模式识别相关的书籍很多,但其实讲的东西都是大同小异,换汤不换药。无非就是神经网络、支持向量机、各种分类、聚类、回归的算法,还有深度学习。
毋庸置疑,我们已进入大数据时代,大数据是个笼统的概念。大数据在1980年被提出来,最近被炒作地很热,也是媒体忽悠的一个概念。随着网络的发展,使得各种数据的获取更加便捷,大数据是对各种数据的统称。其实大数据并不仅仅指海量的数据,把上亿条关系型数据库称为大数据也有一点肤浅。普遍认为,大数据应该具备三个特征:
有人提出:数据挖掘=大数据+机器学习。感觉这样描述这三者的关系再适合不过了。机器学习强调计算机的学习能力,注重算法。大数据是各种数据的一种概念描述。数据挖掘我们最终的目的,我们使用机器学习的方法从海量的复杂的数据中找出对我们有用的信息,即知识发现。
我们可以这理解:模式识别=数据+机器学习。模式识别的本质就是分类和聚类,也就是监督模式识别与非监督模式识别。模式识别最重要的应用就是信息处理领域了,如图像识别、语音识别。
这里为什么用“数据”,因为这里通常是图像、语音、文本等之类的数据。其实也没必要在一些概念上较真。没必要探究某些数据到底是不是大数据。不管是不是大数据,处理的方法都是一样的,只不过,“大数据”显得的牛B一点。
大数据是一个时代性的概念,是社会发展的必然产物,如同互联网时代、物联网时代等等,现在可以说我们处于大数据时代,一个信息爆炸的时代,任何数据都可以称为大数据,甚至用excel处理数据都可以称为大数据处理。如同,高大上的智能家居可以说属于物联网的范畴,老旧的pos机也属于物联网的范畴。
从知识发现到数据挖掘再到大数据,并没有本质的变化,都在进一步步强调数据的重要性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27