京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据对移动应用程序开发有哪些影响
“什么样的应用程序是一个伟大的应用程序呢?”这个问题困扰行业专家多时,大家各执己见一直到现在都还没有定论。
如果要说“一个成功的移动应用程序开发的关键因素是什么?”那么,大数据和数据分析的贡献不可磨灭。每天客户都会产生数百万字节的数据被移动应用程序开发者利用,用户不仅需要及时了解他们的移动体验和实时情景,而且还要在多个设备上都享受到其服务,并为其决策提供足够的支撑。
使用和理解大数据
目前,用户产生的数据量已经超过PB级,原始数据或信息的数量达到了数个ZB级,并且还在增长,未来数据量预计可能会达到YB级。
事实上,之前创建的全部数据量都比现在产生的非结构化数据量要小,所以借助高级分析将这些大量数据转换为相关信息是极具价值的。在这篇文章中,我们将关注大数据如何为移动应用程序开发奠定坚实的基础,以及如何影响企业的营销结构。
制作客户驱动的移动应用程序
一个好的应用程序必须要易于使用、快速、无缺陷,极具吸引力,最重要的是,它必须能够尽可能地满足用户的需求。因此,使用大数据分析仔细分析客户,可以开发更具可用性的应用程序,并且能够真正满足客户的需求。
创新和优秀的应用程序的最佳想法的主要来自于用户体验。通过了解客户在使用应用程序时的具体行为及其与应用程序的交互方式,移动应用程序开发人员可以实现增强现有应用程序的解决方案,并为新应用程序制定以用户为导向的理念。
大数据加速用户体验分析
如前所述,应用程序开发需要全面分析客户体验。大数据概括了用户行为的全部细节,可以将用户体验融入到应用程序开发中,从而指出生动的点。然后,通过分析他们对应用程序的集体行为来传达用户的完整需求。
移动应用程序开发人员可以通过分析类似的应用程序背后的大数据,从而创建出更符合用户想法的新的应用程序。
例如,如果开发者想要创建类似健康和健身的应用程序,则可以分析者其中评分最高的应用程序,诸如Argus,Runkeeper,Fitstar Personal Trainer等等,并了解用户真正的需求。然后再加上计步器、卡路里计数器等创新功能,更好的服务目标客户。
营销的新时代
商业智能和大数据让基于知识的移动应用程序变得有径可循,所以一些产品人员就尝试找到电子邮件平台和移动应用程序之间的链接,例如建立营销云电子邮件工作室,敏捷数据信息平台等等。
移动应用程序利用大数据分析的能力对于以专业级别定位用户的公司至关重要,从业务分析到运营智能再到市场营销都能提供价值。
苹果公司采用供应链管理功能来推动其营销优势,苹果公司的移动应用程序开发人员可以花四天时间将任何产品组装到供应链中。虽然并不是所有的公司都像苹果,但是我们也可以基于此做出一些努力:
·通过关联组合当前事件,避免产品受到外部条件的较大影响。
·从各种供应链点提取尽可能多的信息和数据。
·通过应用分析来预测未来
·在丰富的移动界面中提供完整的用户体验地图。
·大数据是未来应用的关键一环
由于大量用户转向平板电脑和智能手机,移动应用市场预计到2020年将超过1000亿美元。因此,开发更好的移动应用显然是数字技术的未来。
与计算机应用程序相比,移动应用程序的波动性更大。简单易操作使其广受用户欢迎。分析大数据是同等获取信息的最有效方式,所以企业在这方面要多多投入。
正如我们刚刚看到的,大数据对于未来移动应用程序的开发非常重要。分析专业人士发现通过新技术来分析大量未排序的数据,会在这其中发现很多有趣的新功能,为用户提供更理想和难忘的体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20