
1 决策树算法(Decision Tree)是从训练数据集中归纳出一组分类规则的过程。
实际操作中,与训练数据集不相矛盾的决策树可能有多个,也可能一个都没有;理想情况是找到一个与训练数据矛盾较小的决策树,同时也具有良好的泛化能力。
2 决策树结构:
有向边
节点
-内部节点: 数据的特征
-叶节点:数据的类别
决策树准则:每个实例都被一条路径覆盖,且仅被一条路径覆盖
3 决策树算法过程
特征选择
决策树生成过程就是划分数据集的过程,合适地选取特征能帮助我们将数据集从无序数据组织为有序;
有很多方法可以划分数据集,决策树算法根据信息论来度量信息;
信息论中有很多概念,不同的决策树生成算法使用不同的信息论概念来进行特征选择。
决策树生成
有诸如ID3, C4.5, CART等算法用于生成决策树;
ID3和CART4.5的差别在于用于特征选择的度量的不同
-ID3使用信息增益进行特征选择
-C4.5使用信息增益比进行特征选择
-以上两个算法流程:迭代的寻找当前特征中最好的特征进行数据划分,直到所有特征用尽或者划分后的数据的熵足够小。
ID3核心思想:信息增益越大说明该特征对于减少样本的不确定性程度的能力越大,也就代表这个特征越好。
C4.5核心思想:某些情况(比如按照身份证号、信用卡号、学号对数据进行分类)构造的树层数太浅而分支又太多,而这样的情况对数据的分类又往往没有意义,所以引入信息增益比来对分支过多的情况进行适当“惩罚”。具体情景解释可见这篇博客
CART我还没了解过,暂不介绍
4 决策树生成算法得到的树对训练数据的分类很准确,但对未知数据的分类却没那么准确,容易过拟合;因为决策树考虑的特征太多,构建得太复杂。
所以我们需要对决策树进行剪枝:从已生成的树上裁掉一些子树或叶节点,并将其根节点或父节点作为新的叶节点,以此简化树。
剪枝算法很多,这里引入一种简单的:极小化决策树整体的损失函数。
设树 T 的叶节点个数为 |T|, t 是树 T 的叶节点,该叶节点有Nt
个样本点,其中 k 类的样本点有Ntk个, k = 1,2,…,k, Ht(T)是叶节点 t 上的经验熵,α≥0
为参数,决策树的损失函数可定义如下
而经验熵为
其中,为了简洁,令
所以,上面的损失函数可以记为
各个符号定义如下:
C(T) 表示模型对训练数据的预测误差,即拟合程度
|T| 表示模型复杂度
α
控制以上两者之间的平衡
当α
确定时,树越大,与训练数据的拟合就越好,C(T)越小,但是树的复杂度也会上升,|T| 上升;而树越小,树的复杂度就越低,|T| 越小,但往往和训练数据的拟合程度不好,C(T) 又会上升
较大的α
使得生成较简单的树,较小的α使得生成较复杂的树,当α=0
,就完全不考虑树的复杂度了,相当于不进行剪枝操作
决策树生成只考虑提高信息增益来更好拟合训练数据,但决策树剪枝则通过优化损失函数来减少树的复杂度;可以说决策树生成学习的是局部模型,而决策树剪枝学习的是整体模型
剪枝算法流程
计算每个节点的经验熵
递归地从树的叶节点向上回缩:设一组叶节点
回缩到父节点前后的整体树分别是TB
和TA,其对应的损失函数值分别是Cα(TB)和Cα(TA)
,如果
那么将父节点变为新的叶节点,即剪枝
重复执行步骤2,直到不能再继续为止,得到损失函数最小的子树Tα
5
代码部分,先挖个坑。。。过段时间回来填
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01