京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1 决策树算法(Decision Tree)是从训练数据集中归纳出一组分类规则的过程。
实际操作中,与训练数据集不相矛盾的决策树可能有多个,也可能一个都没有;理想情况是找到一个与训练数据矛盾较小的决策树,同时也具有良好的泛化能力。
2 决策树结构:
有向边
节点
-内部节点: 数据的特征
-叶节点:数据的类别
决策树准则:每个实例都被一条路径覆盖,且仅被一条路径覆盖
3 决策树算法过程
特征选择
决策树生成过程就是划分数据集的过程,合适地选取特征能帮助我们将数据集从无序数据组织为有序;
有很多方法可以划分数据集,决策树算法根据信息论来度量信息;
信息论中有很多概念,不同的决策树生成算法使用不同的信息论概念来进行特征选择。
决策树生成
有诸如ID3, C4.5, CART等算法用于生成决策树;
ID3和CART4.5的差别在于用于特征选择的度量的不同
-ID3使用信息增益进行特征选择
-C4.5使用信息增益比进行特征选择
-以上两个算法流程:迭代的寻找当前特征中最好的特征进行数据划分,直到所有特征用尽或者划分后的数据的熵足够小。
ID3核心思想:信息增益越大说明该特征对于减少样本的不确定性程度的能力越大,也就代表这个特征越好。
C4.5核心思想:某些情况(比如按照身份证号、信用卡号、学号对数据进行分类)构造的树层数太浅而分支又太多,而这样的情况对数据的分类又往往没有意义,所以引入信息增益比来对分支过多的情况进行适当“惩罚”。具体情景解释可见这篇博客
CART我还没了解过,暂不介绍
4 决策树生成算法得到的树对训练数据的分类很准确,但对未知数据的分类却没那么准确,容易过拟合;因为决策树考虑的特征太多,构建得太复杂。
所以我们需要对决策树进行剪枝:从已生成的树上裁掉一些子树或叶节点,并将其根节点或父节点作为新的叶节点,以此简化树。
剪枝算法很多,这里引入一种简单的:极小化决策树整体的损失函数。
设树 T 的叶节点个数为 |T|, t 是树 T 的叶节点,该叶节点有Nt
个样本点,其中 k 类的样本点有Ntk个, k = 1,2,…,k, Ht(T)是叶节点 t 上的经验熵,α≥0
为参数,决策树的损失函数可定义如下

而经验熵为

其中,为了简洁,令

所以,上面的损失函数可以记为
各个符号定义如下:
C(T) 表示模型对训练数据的预测误差,即拟合程度
|T| 表示模型复杂度
α
控制以上两者之间的平衡
当α
确定时,树越大,与训练数据的拟合就越好,C(T)越小,但是树的复杂度也会上升,|T| 上升;而树越小,树的复杂度就越低,|T| 越小,但往往和训练数据的拟合程度不好,C(T) 又会上升
较大的α
使得生成较简单的树,较小的α使得生成较复杂的树,当α=0
,就完全不考虑树的复杂度了,相当于不进行剪枝操作
决策树生成只考虑提高信息增益来更好拟合训练数据,但决策树剪枝则通过优化损失函数来减少树的复杂度;可以说决策树生成学习的是局部模型,而决策树剪枝学习的是整体模型
剪枝算法流程
计算每个节点的经验熵
递归地从树的叶节点向上回缩:设一组叶节点
回缩到父节点前后的整体树分别是TB
和TA,其对应的损失函数值分别是Cα(TB)和Cα(TA)
,如果
那么将父节点变为新的叶节点,即剪枝
重复执行步骤2,直到不能再继续为止,得到损失函数最小的子树Tα
5
代码部分,先挖个坑。。。过段时间回来填
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01