
r语言做决策树代码实现
0.节点和结点的区别:节点为两线相交,不为终点;而结点为两线相交为终点,没有延伸;
1.分支节点:它指向其他的节点,所以是度不为0的节点。 vs 叶子结点:度为0的结点
2.度:结点拥有的子树数;就是说这个结点下面有几条分支
3.树的深度:树有几层
4.10折交叉验证:常用的测试算法准确性的方法。
将数据集分成10份,轮流将其中9份作为训练数据,1份作为测试数据,进行试验
每次试验都会得出相应的正确率,10次结果的正确率取平均值就作为算法精度的估计,一般还需进行多次10折交叉验证,再求均值
为什么取10折?因为很多理论证明了10折是获得最好误差估计的恰当选择。
#第1步:工作目录和数据集的准备
setwd("C:/Users/IBM/Desktop/170222分类树建模/2.23建模")#设定当前的工作目录,重要!
audit2<-read.csv("model2.csv",header=T)
str(audit2) #转成字符串类型的
#第2步:做训练集和测试集
set.seed(1)
sub<-sample(1:nrow(audit2),round(nrow(audit2)*2/3))
length(sub)
data_train<-audit2[sub,]#取2/3的数据做训练集
data_test<-audit2[-sub,]#取1/3的数据做测试集
dim(data_train)#训练集行数和列数13542 23
dim(data_test) #测试集的行数和列数6771 23
table(data_train$是否转化) #看该列分布的
table(data_test$是否转化)
#做决策树模型。首先对树参数进行设置,再建模
## rpart.control对树进行一些设置
## xval是10折交叉验证
## minsplit是最小分支节点数,这里指大于等于20,那么该节点会继续分划下去,否则停止
## minbucket:叶子节点最小样本数,这里设置100,可以调参
## maxdepth:树的深度
## cp全称为complexity parameter,指某个点的复杂度,对每一步拆分,模型的拟合优度必须提高的程度
#加载程序包和一些参数设定
library(rpart)
ct<-rpart.control(xval=10,minsplit=20,minbucket=150,cp=0.00017)
#rapart包中的raprt函数来做决策树
#na.action:缺失数据的处理,默认为删因变量缺失保留自变量缺失
#method:树的末端数据类型选择相应的变量分割方法:
# 连续性method=“anova”,离散型method=“class”,计数型method=“poisson”,生存分析型method=“exp”
#parms:用来设置三个参数:先验概率、损失矩阵、分类纯度的度量方法(gini和information)
#第3步:建模,观察模型结果
library(rpart)
tree.both<-rpart(as.factor(是否转化)~ .,data=data_train,method='class',minsplit=20,minbucket=150,cp=0.00017)
summary(tree.both)
tree.both$variable.importance
printcp(tree.both)
plotcp(tree.both,lwd=2)
#第4步:画决策树
#画决策树第1种方法,画出来的树比较简单
par(mfrow=c(1,3))
plot(tree.both)
text(tree.both,use.n=T,all=T,cex=0.9)
#画决策树第2种方法,画出来的树稍微好看些
library(rpart.plot)
rpart.plot(tree.both,branch=1,shadow.col="gray",box.col="green",border.col="blue",split.col="red",split.cex=1.2,main="决策树")
#第5步:剪枝
#rpart包提供了一种剪枝方法--复杂度损失修剪的修剪方法
#printcp这个函数会告诉你分裂到的每一层,对应的cp是多少,平均相对误差是多少
#xerror:交叉验证的估计误差;xstd:标准误差;xerror±xstd平均相对误差
printcp(tree.both)
#我们使用具有最小交叉验证误差的cp
cp=tree.both$cptable[which.min(tree.both$cptable[,"xerror"]),"CP"]
cp #cp=0.00049
#第6步:剪枝之后的树再画图
tree.both2<-prune(tree.both,cp=tree.both$cptable[which.min(tree.both$cptable[,"xerror"]),"CP"])
summary(tree.both2)
tree.both2$variable.importance
printcp(tree.both2)
plotcp(tree.both2,lwd=2)
library(rpart.plot)
rpart.plot(tree.both2,branch=1,shadow.col="gray",box.col="green",border.col="blue",split.col="red",split.cex=1.2,main="决策树")
#第7步:输出规则。剪枝后的决策树规则,从规则中再发现规律
library(rattle)
asRules(tree.both2)
#第8步:在测试集上做预测
library(pROC)
pred.tree.both<-predict(tree.both,newdata=data_test)
#第9步,看测试的效果,预测正确的有多少,预测错误的有多少
predictScore<-data.frame(pred.tree.both)
rownames(predictScore) #看这个矩阵行的名字
colnames(predictScore)#看这个矩阵列的名字
predictScore$是否转化<-'ok' #在预测的矩阵后面多加一列‘是否转化’2,全部都是2
predictScore[predictScore$FALSE.>predictScore$TRUE.,][,"是否转化"]=FALSE #如果false的概率大于true的概率,那么判断为false
predictScore[predictScore$FALSE.<=predictScore$TRUE.,][,"是否转化"]=TRUE
n<-table(data_test$是否转化,predictScore$是否转化)
n #看分布情况
percantage<-c(n[1,1]/sum(n[1,]),n[2,2]/sum(n[2,]))
percantage
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27