京公网安备 11010802034615号
经营许可证编号:京B2-20210330
r语言做决策树代码实现
0.节点和结点的区别:节点为两线相交,不为终点;而结点为两线相交为终点,没有延伸;
1.分支节点:它指向其他的节点,所以是度不为0的节点。 vs 叶子结点:度为0的结点
2.度:结点拥有的子树数;就是说这个结点下面有几条分支
3.树的深度:树有几层
4.10折交叉验证:常用的测试算法准确性的方法。
将数据集分成10份,轮流将其中9份作为训练数据,1份作为测试数据,进行试验
每次试验都会得出相应的正确率,10次结果的正确率取平均值就作为算法精度的估计,一般还需进行多次10折交叉验证,再求均值
为什么取10折?因为很多理论证明了10折是获得最好误差估计的恰当选择。

#第1步:工作目录和数据集的准备
setwd("C:/Users/IBM/Desktop/170222分类树建模/2.23建模")#设定当前的工作目录,重要!
audit2<-read.csv("model2.csv",header=T)
str(audit2) #转成字符串类型的
#第2步:做训练集和测试集
set.seed(1)
sub<-sample(1:nrow(audit2),round(nrow(audit2)*2/3))
length(sub)
data_train<-audit2[sub,]#取2/3的数据做训练集
data_test<-audit2[-sub,]#取1/3的数据做测试集
dim(data_train)#训练集行数和列数13542 23
dim(data_test) #测试集的行数和列数6771 23
table(data_train$是否转化) #看该列分布的
table(data_test$是否转化)
#做决策树模型。首先对树参数进行设置,再建模
## rpart.control对树进行一些设置
## xval是10折交叉验证
## minsplit是最小分支节点数,这里指大于等于20,那么该节点会继续分划下去,否则停止
## minbucket:叶子节点最小样本数,这里设置100,可以调参
## maxdepth:树的深度
## cp全称为complexity parameter,指某个点的复杂度,对每一步拆分,模型的拟合优度必须提高的程度
#加载程序包和一些参数设定
library(rpart)
ct<-rpart.control(xval=10,minsplit=20,minbucket=150,cp=0.00017)
#rapart包中的raprt函数来做决策树
#na.action:缺失数据的处理,默认为删因变量缺失保留自变量缺失
#method:树的末端数据类型选择相应的变量分割方法:
# 连续性method=“anova”,离散型method=“class”,计数型method=“poisson”,生存分析型method=“exp”
#parms:用来设置三个参数:先验概率、损失矩阵、分类纯度的度量方法(gini和information)
#第3步:建模,观察模型结果
library(rpart)
tree.both<-rpart(as.factor(是否转化)~ .,data=data_train,method='class',minsplit=20,minbucket=150,cp=0.00017)
summary(tree.both)
tree.both$variable.importance
printcp(tree.both)
plotcp(tree.both,lwd=2)
#第4步:画决策树
#画决策树第1种方法,画出来的树比较简单
par(mfrow=c(1,3))
plot(tree.both)
text(tree.both,use.n=T,all=T,cex=0.9)
#画决策树第2种方法,画出来的树稍微好看些
library(rpart.plot)
rpart.plot(tree.both,branch=1,shadow.col="gray",box.col="green",border.col="blue",split.col="red",split.cex=1.2,main="决策树")
#第5步:剪枝
#rpart包提供了一种剪枝方法--复杂度损失修剪的修剪方法
#printcp这个函数会告诉你分裂到的每一层,对应的cp是多少,平均相对误差是多少
#xerror:交叉验证的估计误差;xstd:标准误差;xerror±xstd平均相对误差
printcp(tree.both)
#我们使用具有最小交叉验证误差的cp
cp=tree.both$cptable[which.min(tree.both$cptable[,"xerror"]),"CP"]
cp #cp=0.00049
#第6步:剪枝之后的树再画图
tree.both2<-prune(tree.both,cp=tree.both$cptable[which.min(tree.both$cptable[,"xerror"]),"CP"])
summary(tree.both2)
tree.both2$variable.importance
printcp(tree.both2)
plotcp(tree.both2,lwd=2)
library(rpart.plot)
rpart.plot(tree.both2,branch=1,shadow.col="gray",box.col="green",border.col="blue",split.col="red",split.cex=1.2,main="决策树")
#第7步:输出规则。剪枝后的决策树规则,从规则中再发现规律
library(rattle)
asRules(tree.both2)
#第8步:在测试集上做预测
library(pROC)
pred.tree.both<-predict(tree.both,newdata=data_test)
#第9步,看测试的效果,预测正确的有多少,预测错误的有多少
predictScore<-data.frame(pred.tree.both)
rownames(predictScore) #看这个矩阵行的名字
colnames(predictScore)#看这个矩阵列的名字
predictScore$是否转化<-'ok' #在预测的矩阵后面多加一列‘是否转化’2,全部都是2
predictScore[predictScore$FALSE.>predictScore$TRUE.,][,"是否转化"]=FALSE #如果false的概率大于true的概率,那么判断为false
predictScore[predictScore$FALSE.<=predictScore$TRUE.,][,"是否转化"]=TRUE
n<-table(data_test$是否转化,predictScore$是否转化)
n #看分布情况
percantage<-c(n[1,1]/sum(n[1,]),n[2,2]/sum(n[2,]))
percantage
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11